Vestnik On-line
Orenburg State University december 22, 2024   RU/EN
Headings of Vestnik
Pedagogics
Psychology
Other

Search
Vak
Антиплагиат
Orcid
Viniti
ЭБС Лань
Rsl
Лицензия Creative Commons

April 2015, № 4 (179)



Rustanov A.R., Kazakova O.N., Kharitonova S.V. THE AXIOM F-HOLOMORPHIC PLANES FOR NORMAL LCACS-MANIFOLDSAlmost contact metric structures have a rich geometry, as well as numerous applications in various areas of mathematics and theoretical physics. Sufficiently important aspect of almost contact geometry is the study of almost contact manifolds satisfying the axiom Ф-holomorphic planes.Key words: We obtain conditions under which normal locally conformal almost cosymplectic manifold satisfies the axiom of Ф-holomorphic planes.

Download
References:

1. Olszak Z. Locally conformal almost cosymplectic manifolds // Colloq. Math. — 57:1. — 1989. — с.73–87.

2. D. Chinea Conformal changes of almost contact metric structures / D. Chinea, J.C.Marrero. — Riv. Mat. Univ. Parma. (5), 1. — 1992. — p.19–31.

3. D. Chinea, J. C. Morrero, "Conformal changes of almost cosymplectic manifolds", Rend. Mat. Appl. (7), 12:4 (1992), 849–867.

4. Gouli-Andreou F. Conformally Flat Contact Metric Manifolds with Qx=rx / F.Gpouli-Andreou, N. Tsolakidou // Beitrage zur Algebra und Geometrie Contributions to Algebra and Geometry. — Vol 45. — 2004, No. 1, p.103-115

5. Kirichenko V. F.The geometry of L-manifolds / V. F. Kirichenkoб V. A. Levkovets // Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 856–873.

6. De U.C. A Note on -Conformally Flat Contact Manifolds / U.C. De, S. Biswas \\ Bull. Malays. Math. Sci. Soc. (2) 29(1) (2006). — p.51–57.

7. Kirichenko V. F.The geometry of contact Lee forms and a contact analog of Ikuta's theorem / V. F. Kirichenko, N. S. Baklashova // Mathematical Notes. — October 2007. — Vol. 82. -Issue 3-4. — p. 309-320.

8. Kirichenko V. F. Differential-Geometric Structures on Manifolds. Second Edition, revised. — Odessa: "Printing House." — 2013. — 458p. [in Russian].

9. Kirichenko V. F. Invariants of conformal transformations of almost contact metric structures / V. F. Kirichenko, I. V. Uskorev // Mathematical Notes. — December 2008. –Vol. 84. — Issue 5-6. — p. 783-794.

10. Kharitonova S.V. Curvature conharmonic tensor of normal locally conformal almost cosymplectic manifolds // Vestnik OSU. — №12 (161), December. — 2013. — с.182-186.

11. Ishihara I. Anti-invariant submanifolds of a Sasakian space forms // Kodai Math. J. — 1979. — vol.2. — p. 171-186.

12. Ogiue K. On almost contact manifolds admitting axiom of planes or axiom of free mobility // Kodai Math. Semin. Repts. — 1964. — vol. 16. — p. 223—232.

13. Kirichenko V.F. The Axiom Ф-holomorphic planes in contact geometry // Izvestiya AS USSR. Ser. Math. 1984. Vol. 48. №4. p. 711-739.

14. Volkova E.S. The Axiom of Ф-Holomorphic Planes for Normal Killing Type Manifolds / E. S. Volkova // Mathematical Notes. — March 2002, Vol.71. — Issue 3-4. — p.330-338

15. Kirichenko V.F. On the geometry of normal locally conformal almost cosymplectic manifolds / V. F. Kirichenko, S. V. Kharitonova // Mathematical Notes. — February 2012. — Vol. 91. — Issue 1-2. –p. 34-45.

16. Kirichenko, V. F. Differential geometry of quasi-Sasakian manifolds / V.F.Kirichenko, A.R. Rustanov // Matematicheskiy Sbornik — 2002. — Vol.8. — N193. — P.1173–1201.


About this article

Authors: Haritonova S.V., Rustanov A.R., Kazakova O.N.

Year: 2015


Editor-in-chief
Sergey Aleksandrovich
MIROSHNIKOV

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
© Электронное периодическое издание: ВЕСТНИК ОГУ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
Зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций
Свидетельство о регистрации СМИ: Эл № ФС77-37678 от 29 сентября 2009 г.
Учредитель: Оренбургский государственный университет (ОГУ)
Главный редактор: С.А. Мирошников
Адрес редакции: 460018, г. Оренбург, проспект Победы, д. 13, к. 2335
Тел./факс: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 © CIT OSU