Arifullin M.R., Berdinskiy V. L. NONLOCAL CORRELATIONS OF INDISTINGUISHABLE FERMIONS MULTISPIN STATESAny large system of N fermions, such as electrons with spin S = 1/2, the spin state of any particle are shown to be entangled with the other part of the system containing N-1 particle. However, the spin state of this electron is not entangled with any other particle, and spin state of any electron pair is not entangled. These properties of spin states manifest in the Einstein-Podolsky-Rosen as confirmation or violation of the Bell inequalities indicating the presence of non-local quantum spin correlations.Key words: quantum entanglement, density matrix, Pauli's principle, quantum correlations
References:
1. Schliemann J., Cirac I., Lewenstein M., and Loss D. Quantum correlations in two-fermion systems // Phys. Rev. A. — 2001. –V. 64. — №022303
2. Eckert K., Schliemann J., Bruss D. aAnd Lewenstein M. Quantum Correlations in Systems of Indistinguishable Particles // Annals of Physics — 2002. –V. 88. — №299
3. Amico L., Fazio L., Osterloh A. and Vedral V. Entanglement in many-body systems // Rev. Mod. Phys. — 2001. –V. 80. — №517.
4. Buscemi F., Bordone P. and Bertoni A. Linear entropy as an entanglement measure in two– fermion systems // Phys. Rev. A — 2007. –V. 75. — №032301
5.Zutic I., Fabian J., and Sarma S. D. Spintronics: Fundamentals and applications // Rev. Mod. Phys. — 2004. –V.76. — №323
6.Valiev K. A., Kokin А. А. Quantum Computers: Hopes and Reality. M.: Regular and Chaotic Dynamics. — 2004. — 320 p.
7. Kitaev А., Shen А., Vayliy М. Classical and quantum computing. M. MCCME. — 1999. — 192 p.
8. Cirac J., Zoller P. Quantum Computations with Cold Trapped Ions // Phys. Rev. Lett. — 1995. — V. 74. — №20.
9. Kilin S. Ya. Quantum Information // Physics-Uspekhi. — 1999– V.169– №5. — pp. 507–527.
10. Arifullin M. R., Berdinskii V. L. Spin States of Multielectron Systems and the Action of Multi-Spin Bans // Russian Journal of Physical Chemistry A, 2013, Vol. 87, No. 7, pp. 1186–1190.
11. Zel'dovich Ya. B. , Buchachenko A. L. , Frankevich E. L. Magnetic-spin effects in chemistry and molecular physics // Physics-Uspekhi. — 1988. — V.155. — №1. — pp. 3–45.
12. Nielsen M. A., Chuang I. L. Quantum Computation and Information. Cambridge: Univ. Press. — 2000. — P. 700.
13. Bouwmeester D., Ekkert A.and Zeilinger A. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computations. Berlin: Springer-Verlag. — 2000. — 314 c.
14. Hanson R., Kouwenhoven L. P., Petta J. R., Tarucha S., Vandersypen L. M. K. Spins in few-electron quantum dots // Rev. Mod. Phys. — 2006. — V. 79. — №4.
15. Arifullin M. R., Berdinskii V. L Quantum entanglement of spin states of indistinguishable Fermions // Vestnik OSU. — 2013. — №.8.
16. Einstein A., Podolsky B., Rosen N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? // Phys. Rev. — 1935. — V.47. — №10.
17. Clauser J. F., Horne M. A., Shimony A., and Holt R. A. Proposed Experiment to Test Local Hidden-Variable Theories // Phys. Rev. Lett. — 1969. — V. 23. — №880.
18. Aspect A., Grangier P., Roger G. Experimental test of Bell's inequalities using time-varying analyzers // Phys. Rev. Lett. — 1982. — V.49. — P. 91-94
About this article
Authors: Berdinskiy V.L., Arifullin M.R.
Year: 2013
|