Arifullin M. R., Berdinsky V. L. QUANTUM ENTANGLEMENT OF SPIN STATES OF INDISTINGUISHABLE FERMIONSSpin density matrices of the system, containing arbitrary even number N of indistinguishable fermions with spin S = 1/2, described by antisymmetric wave function, have been calculated. The indistinguishability and the Pauli principles are proved to determine uniquely spin states, spin correlations and entanglement of fermion spin states. Increase of the particle number in the multifermion system reduces the spin correlation in any pair of fermions. The fully entangled system of N electrons are shown to be composed by pairs with nonentangled spin states that is the incoherent superposition of the singlet and triplet states.Key words: quantum entanglement, density matrix, Pauli's principle, quantum correlations.
References:
1. Zutic I., Fabian J., and Sarma S. D. Spintronics: Fundamentals and applications // Rev. Mod. Phys. — 2004. –V.76. — № 323
2. Valiev K. A., Kokin А. А. Quantum Computers: Hopes and Reality. M.: Regular and Chaotic Dynamics. — 2004. — 320 p.
3. Kitaev А., Shen А., Vayliy М. Classical and quantum computing. M. MCCME. — 1999. — 192 p.
4. Cirac J., Zoller P. Quantum Computations with Cold Trapped Ions // Phys. Rev. Lett. — 1995. — V. 74. — № 20.
5. Kilin С. Я.Quantum Information // Physics-Uspekhi. — 1999– V.169– № 5. — pp. 507–527.
6. Zel'dovich Ya. B. , Buchachenko A. L. , Frankevich E. L. Magnetic-spin effects in chemistry and molecular physics // Physics-Uspekhi. — 1988. — V.155. — №1. — pp. 3–45.
7. Bouwmeester D., Ekkert A. and Zeilinger A. The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computations. Berlin: Springer-Verlag. — 2000. — 314 c.
8. Wang X. and Zanardi P. Quantum entanglement and Bell inequalities in Heisenberg spin chains // Phys.Rev. Lett. A — 2002. — V. 301. — P. 1-6.
9. Lunkes C., Brukner C., Vedral V. Natural multiparticle entanglement in a Fermi gas // Phys. Rev. Lett. — 2005. — V. 95. — № 030503.
10. Nielsen M. A., Chuang I. L. Quantum Computation and Information. Cambridge: Univ. Press. — 2000. — P. 700.
11. Valiev К. А. Quantum computer and quantum computations // Physics-Uspekhi. — 2005. — V.175. — №1. — pp. 3–39.
12. Vedral V. Entanglement in the Second Quantization Formalism // Central Eur. J. Phys. — 2003. — V. 1. — P. 289-306.
13. Oh S. and Kim J. Entanglement of electron spins of noninteracting electron gases // Phys. Rev. A — 2004. –V. 69. — № 054305
14. Landau L. D., Lifshitz Е. М. Quantum mechanics. М.: Nauka — 1974. — 754 p.
15. Blum К. Density Matrix Theory and Applications. М.: Mir. — 1983. — 248 p.
16. Schliemann J., Cirac I., Lewenstein M., and Loss D. Quantum correlations in two-fermion systems // Phys. Rev. A. — 2001. –V. 64. — № 022303
17. Eckert K., Schliemann J., Bruss D. and Lewenstein M. Quantum Correlations in Systems of Indistinguishable Particles // Annals of Physics — 2002. –V. 88. — № 299 18. Amico L., Fazio L., Osterloh A. and Vedral V. Entanglement in many-body systems // Rev. Mod. Phys. . — 2081. –V. 80. — № 517.
19. Buscemi F., Bordone P. and Bertoni A. Linear entropy as an entanglement measure in two– fermion systems // Phys. Rev. A — 2007. –V. 75. — № 032301
20, Zander C., Plastino A. R., Casas M., Plastino A. Entropic entanglement criteria for Fermion systems // The European Physical Journal D — 2012. — V. 66 — № 14
21. Rumer Y. B., Fet А. I. The theory of unitary symmetry. М.: Nauka — 1970. — 400 p.
22. Aldoshin S. M., Feldman E.B.и Yurishev М. А. Quantum entanglement in nitrozil of complex ferrum // JETP. — 2008. — V.134. — P.940.
23. Peres A. Separability Criterion for Density Matrices // Phys. Rev. Lett. — 1996. — V. 77. — №1413.
24. Horodecki M., Horodecki P. and Horodecki R. Separability of mixed states: necessary and sufficient conditions // Phys. Lett. A. — 1996. — V. 223. — 1
25. Vidal G. and Werner R. F. A. Computable measure of entanglement // Phys. Rev. A. — 2002. — V. 65. — №032314
26. Nielsen M.A. Conditions for a class of entanglement transformations // Phys. Rev. Lett. — 1999. — V. 83. — № 436.
27. Belousov Yu. М., Мanko V. I. Density Matrix. Presentation and application in statistical mechanics. М.: MPTI — 2004. — 163 p.
28. Gantmaher F. R. Matrix theory. М.: Nauka — 1966. — 576 p.
About this article
Authors: Arifullin M.R., Berdinskiy V.L.
Year: 2013
|