Vestnik On-line
Orenburg State University november 24, 2024 š RU/EN
Headings of Vestnik
Pedagogics
Psychology
Other

Search
Vak
áÎÔÉÐÌÁÇÉÁÔ
Orcid
Viniti
üâó ìÁÎØ
Rsl
ìÉÃÅÎÚÉÑ Creative Commons

Aprilš2020, №š2š(225), pagesš95-104

doi: 10.25198/1814-6457-225-95

Bizyuk A.P., Kolosova T.A., Kac E.E., Sorokin V.M. INTELLIGENCE STRUCTURE OF CHILDREN WITH AUTISM SPECTRUM DISORDER AND CHILDREN WITH MILD MENTAL RETARDATIONAccording to statistics in recent years, there has been a steady increase in the number of people with autism spectrum disorders (ASD), characterized in particular by disorders in the field of socio-psychological relations and specific changes in the cognitive sphere that impede the course of natural psychological adaptation. The theories of the origin of autism advanced in Western psychology are the theory of mind, the theory of central binding (central coherence theory) and the hypothesis of the weakening of the so-called. executive functions and individually and combinatorially quite adequately linked to the recorded changes from the three morphological-functional blocks according to A.R. Luria. The diversity, and sometimes the inconsistency of the obtained morphometric data in autistic children (regarding the total size of the brain, gray and white matter of the cerebral hemispheres, commissural structures, the hippocampus, tonsils, cerebellum, etc.) correlate with the same high diversity and sometimes bizarre manifestations intellectual activityš— from pronounced forms of mental retardation to a very high, although unusual in structure of cognitive development.
Correct construction of technologies for working with such children and their effective integration into the system of socio-psychological relations, or specific adaptation to it, is impossible without taking into account the intellectual potential and a differentiated approach based on both general and individualized laws of the child’s cognitive development.
We made an attempt to compare the traditional characteristics of the intellectual activity of children with autism spectrum disorders and children of the same age with mental retardation (MA) in order to identify general and specific trends in their cognitive development. For this, the well-known Veksler test was used, which ensures the comparability of experimental data with normative data for the corresponding age group.
It was found that children with ASD statistically significantly “gain” in the performance of those mental functions that involve the use of optical-spatial gnosis and constructive praxis, but expectedly “lose” in cases that require modeling behavior in social situations and taking into account everyday experience.
Key words: autism spectrum disorder, mental retardation, intelligence, structure of intelligence, autism.

Download
References:

1. Kagan V.E., Autizm u detej.š— L.: Medicina.š— 1981.š— 190 s.

2. Korotkih, V. M. Problema autizma v sovremennom mire / V. M. Korotkih, M. M. Magamedeminova, S. R. Polyakova.š— Tekst : neposredstvennyj, elektronnyj // Molodoj uchenyj.š— 2020.š— №7 (297).š— S. 299-300.š— URL: https://moluch.ru/archive/297/67441/ (data obrashcheniya: 28.04.2020).

3. Mamajchuk I.I., Pomoshch' psihologa detyam s autizmom.š— SPb.: Rech'.š— 2007.š— 288 s.

4. Mikirtumov B.E., Zavitaev P.YU. Autizm: istoriya voprosa i sovremennyj vzglyad.– SPb.: Izdatel'stvo N-L., 2012.š— 94 s.

5. Sorokin A.B. Narusheniya intellekta pri rasstrojstvah autisticheskogo spektra [Elektronnyj resurs] // Sovremennaya zarubezhnaya psihologiya. 2018.š— Tom 7.š— №1.š— S. 38–44.

6. Anderson J.S. Cortical underconnectivity hypothesis in autism: evidence from functional connectivity MRI // Comprehensive Guide to Autism.š— New York: Springer, 2014.š— P. 1457–1471.

7. Anderson J.S., Druzgal T.J., Froehlich A., DuBray M.B., Lange N., Alexander A.L., Abildskov T., Nielsen J.A., Cariello A.N., Cooperrider J.R., Bigler E.D., Lainhart J.E. Decreased Interhemispheric Functional Connectivity in Autism // Cerebral Cortex.š— 2011.š— Vol. 21.š— №55.š— P. 1134-1146.

8. Aylward E.H., Minshew N.J., Field K., Sparks B.F., Singh N. Effects of age on brain volume and head circumference in autism // Neurology.š— 2002.š— Vol. 59.š— №2.š— P. 175-183.

9. Aylward E.H., Minshew N.J., Goldstein G., Honeycutt N.A., Augustine A.M., Yates K.O., Barta P.E., Pearlson G.D. MRI volumes of amygdala and hippocampus in non-mentally retarded autistic adolescents and adults // Neurology.š— 1999.š— Vol. 53.š— №9.š— P. 2145-2150

10. Barnea-Goraly N., Kwon H., Menon V., Eliez St., Lotspeich L., Reiss A.L. White Matter Structure in Autism: Preliminary Evidence from Diffusion Tensor Imaging // Biological Psychiatry.š— 2004.š— Vol. 55:– P. 323–326.

11. Baron-Cohen, Simon; Leslie, Alan M.; Frith, Uta. “Does the autistic child have a “theory of mind”?” / Cognition.š— 1985. No 21 (1). P. 37–46. doi:10.1016/0010-0277(85)90022-8. PMID 2934210

12. Bashat D.B, Kronfeld-Duenias V., Zachor D.A., Ekstein P.M., Hendler T., Tarrasch R., Even A., Levy Y., Sira L.B. Accelerated maturation of white matter in young children withautism: A high b value DWI study // NeuroImageš— 2007.š— Vol. 37.š— №1.š— P. 40-47

13. Bloss C.S., Courchesne E. MRI neuroanatomy in young girls with autism: a preliminary study // Journal of the American Academy of Child and Adolescent Psychiatry.š— 2007.š— Vol. 46.š— №4.š— P. 515-523.

14. Carper R., Courchesne E. Localized enlargement of the frontal lobe in autism // Biological Psychiatry.š— 2005.š— Vol. 57.š— №2š— P. 126–133.

15. Carper R.A., Moses P., Tigue Z.D., Courchesne E. Cerebral lobes in autism: early hyperplasia and abnormal age effects // Neuroimage.š— 2002.š— Vol. 16.š— №4.š— P. 1038–1051.

16. Chaddad A., Desrosiers C., Hassan L., Tanougast C. Hippocampus and amygdala radiomic biomarkers for the study of autism spectrum disorder // BMC Neuroscience.š— 2017.š— Vol. 18. №52, URL: https://doi.org/10.1186/s12868-017-0373-0.

17. Chawarska K., Campbell D., Chen L., Shic F., Klin A., Chang J. Early generalized overgrowth in boys with autism // Archives of General Psychiatry.š— 2011.š— Vol. 68.š— №10.š— P. 1021–1031.

18. Courchesne E., Pierce K. Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity / International Journal of Developmental Neuroscience.š— 2005.š— Vol. 23.š— №2-3.š— P. 153–170

19. D. Premack and G. Woodruff, “Chimpanzee problem-solving: a test for comprehension,” Science, vol. 202, no. 4367, 1978.? pp. 532–535

20. Dager S.R., Wang L., Friedman S.D., Shaw D.W., Constantino J.N., Artru A.A., Dawson G., Csernansky J.G. Shape Mapping of the Hippocampus in Young Children with Autism Spectrum Disorder // American Journal of Neuroradiology.š— 2007.š— Vol. 28.š— №4.š— P. 672-677.

21. Davis M., Whalen P.J. The amygdala: vigilance and emotion // Molecular Psychiatry.š— 2001.š— Vol. 6.š— P. 13–34.

22. Dawson M., Soulières I., Gernsbacher M. A., Mottron L. The Level and Nature of Autistic Intelligence. / Psychological Science.š— 2007.š— Vol. 18.š— No 8.š— P. 657–662.

23. Dementieva Y.A., Vance D.D., Donnelly S.L., Elston L.A., Wolpert C.M., Ravan S.A., DeLong G.R., Abramson R.K., Wright H.H., Cuccaro M.L. Accelerated head growth in early development of individuals with autism. // Pediatric Neurology.š— 2005.š— Vol. 32.š— №2.š— P. 102-108.

24. DiCicco-Bloom E., Lord C., Zwaigenbaum L., Courchesne E., Dager St.E., Schmitz Ch., Schultz R.T., Crawley J., Young L.J. The Developmental Neurobiology of Autism Spectrum Disorder // The Journal of Neuroscience.š— 2006.š— Vol. 26.š— №26.š— ò. 6897-6906.

25. Fatemi S.H., Halt A.R., Realmuto G., Earle J., Kist D.A., Thuras P., Merz A. Purkinje cell size is reduced in cerebellum of patients with autism // Cellular and Molecular Neurobiology.š— 2002.š— Vol. 22.š— №2.š— P. 171–175.

26. Filipek P.A., Richelme C., Kennedy D.N., Rademacher J., Pitcher D.A., Zidel S.Y., Caviness V.S. Morphometric analysis of the brain in developmental language disorders and autism // Annals of Neurology.š— 1992.š— Vol. 32.š— P. 475

27. Frith F. U. Autism Explaining the Enigma. Cambridge: Basil Blackwell.š— 1989.š— 204 p.; Happé F., Frith U. The weak coherence account: Detail-focused cognitive style in autism spectrum disorders. / Journal of Autism and Developmental Disorders.š— 2006.š— No 36. P. 5–25

28. Ha S., Sohn I.-J., Kim N., Sim H.J., Cheon K.-A. Characteristics of brains in autism spectrum disorder: structure, function and connectivity across the lifespan // Experimental Neurobiology.š— 2015.š— Vol. 24.š— №4.š— P. 273–284.

29. Hardan A.Y., Muddasani S., Vemulapalli M., Keshavan M.S., Minshew N.J. An MRI study of increased cortical thickness in autism. // American Journal of Psychiatry.š— 2006.š— Vol. 163.š— №7.š— P. 1290–1292

30. Hazlett H.C., Poe M., Gerig G., Smith R.G., Provenzale J., Ross A., Gilmore J., Piven J. Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. // Archives of General Psychiatry.š— 2005.š— Vol. 62.š— №12š— P. 1366–1376.

31. Howard M.A., Cowell P.E., Boucher J., Broks P., Mayes A., Farrant A., Roberts N. Convergent neuroanatomical and behavioural evidence of an amygdala hypothesis of autism // Neuroreport.š— 2000.š— Vol. 11.š— №13.š— P. 2931-2935.

32. Hughes C., Russell J., Robbins T. W., Evidence for executive dysfunction in autism. / Neuropsychologia.š— 1994.š— Vol. 32.š— No. 4.š— Pp. 477–492

33. Joseph R.M., Tager-Flusberg H., Lord C. Cognitive profiles and social-communicative functioning in children with autism spectrum disorder. / J. Child Psychol. Psychiatry.š— 2002.š— Vol. 43.š— No 6.š— P. 83-90.;

34. Jou R.J., Mateljevic N., Kaiser M.D., Sugrue D.R., Volkmar F.R., Pelphrey K.A. Structural Neural Phenotype of Autism :Preliminary Evidence from a Diffusion Tensor Imaging Study Using Tract-Based Spatial Statistics // American Journal of Neuroradiology.š— 2011.š— Vol. 32š— №9.š— P. 1607–1613.

35. Kana R.K., Libero L.E., Moore M.S. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders // Physics of Life Reviews.š— 2011.š— Vol. 8.š— №. 4.š— P. 410–437

36. Keary C.J., Minshew N.J., Bansal R., Goradia D., Fedorov S., Keshavan M.S., Hardan A.Y. Corpus callosum volume and neurocognition in autism // Journal of Autism and Developmental Disorders.š— 2009.š— Vol. 39.š— №6.š— P. 834–841.

37. Khundrakpam B.S., Lewis J.D. Kostopoulos P., Carbonell F. Evans A.C. Cortical thickness abnormalities in autism spectrum disorders through late childhood, adolescence, and adulthood: A large-scale MRI study // Cerebral Cortex.š— 2017.š— Vol. 27.š— №3,š— P. 1721–1731

38. Kleinhans N.M., Richards T., Greenson J., Dawson G., Aylward E. Altered dynamics of the fMRI response to faces in individuals with autism // Journal of Autism and Developmental Disorders.š— 2016.š— Vol. 46.š— №1.š— P. 232-241.

39. Kleinhans N.M., Richards T., Sterling L., Stegbauer K.C., Mahurin R., Johnson L.C., Greenson J., Dawson G., Aylward E. Abnormal functional connectivity in autism spectrum disorders during face processing // Brain.š— 2008.š— Vol. 131.š— Pt 4.š— P.1000–1012.

40. Lainhart J.E., Bigler E.D., Bocian M., Coon H., Dinh E., Dawson G., Deutsch C.K., Dunn M., Estes A., Tager-Flusberg H., Folstein S., Hepburn S., Hyman S., McMahon W., Minshew N., Munson J., Osann K., Ozonoff S., Rodier P., Rogers S., Sigman M., Spence M.A., Stodgell Ch.J., Volkmar F. Head circumference and height in autism. A study by the collaborative program of excellence in autism // American Journal of Medical Genetics. Part Aš— 2006.š— Vol.140.š— №21.š— P. 2257–2274.

41. Lange N., Travers B.G., Bigler E.D., Prigge M.B., Froehlich A.L., Nielsen J.A., Cariello A.N., Zielinski B.A., Anderson J.S., Fletcher P.T., Alexander A.A., Lainhart J.E. Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years // Autism Research.š— 2015.š— Vol. 8.š— №1.š— P. 82-93.

42. Matson JL, Shoemaker M. Intellectual disability and its relationship to autism spectrum disorders. / Res Dev Disabil.š— 2009.š— Vol. –30. No 6. P. 1107š— 1114.;

43. Maximo J. O., Cadena E.J., Kana R.K. The implications of brain connectivity in the neuropsychology of autism // Neuropsychology Review.š— 2014.š— Vol. 24.š— №1.š— P. 16–31.

44. Minshew N.J., Sweeney J., Luna B. Autism as a selective disorder of complex information processing and underdevelopment of neocortical systems. Molecular Psychiatry / 2002. Vol. 7.š— No 2.š— P.14–15

45. Mitelman S.A., Bralet M.C., Haznedar M.M., Hollander E., Shihabuddin L., Hazlett EA., Buchsbaum M.S. Diametrical relationship between gray and white matter volumes in autism spectrum disorder and schizophrenia // Brain Imaging and Behavior.š— 2017š— Vol. 11. №6.š— P. 1823-1835.

46. Monk C.S., Weng S.-J., Wiggins J.L., Kurapati N., Louro H.M.C., Carrasco M., Maslowsky J., Risi S., Lord C. Neural circuitry of emotional face processing in autism spectrum disorders // Journal of Psychiatry and Neuroscience.š— 2010.š— Vol. 35.š— №2. P. 105–114.

47. Robinson S, Goddard L., Dritschel B., Wisley M., Howlin P., Executive functions in children with autism spectrum disorders. / Brain and Cognition.š— 2009.š— Vol. 71.š— No. 3.š— Pp. 362–368

48. Rommelse N., Langerak I., van der Meer J., de Bruijn Y., Staal W., Oerlemans A., Buitelaar J. Intelligence may moderate the cognitive profile of patients with ASD.š— PLoS One.š— 2015. Vol. 10 üÌÅËÔÒÏÎÎÙÊ ÒÅÓÕÒÓ: https://www.researchgate.net/publication/282759404_Intelligence_May_Moderate_the_Cognitive_Profile_of_Patients_with_ASD;

49. Scheuffgen K, Happe F, Anderson M, Frith U. High “intelligence,” low “IQ”? Speed of processing and measured IQ in children with autism. / Dev Psychopathol.š— 2000.š— Vol. 12.š— No 1. P. 83–90;

50. Schuetze M., Park M.T.M., Cho I.Y.K., MacMaster F.P., Chakravarty M.M., Bray S.L. Morphological alterations in the thalamus, striatum, and pallidum in autism spectrum disorder // Neuropsychopharmacology.š— 2016.š— Vol. 41.š— №11.š— P. 2627–2637.

51. Siegel Don J., Minshew N., Goldstein G. Wechsler IQ profiles in diagnosis of high-functioning autism / Journal of Autism and Developmental Disorders/š— 1996.š— Vol. 26.š— No 4.š— P. 389-406

52. Wallace G.L., Eisenberg I.W., Robustelli B., Dankner N., Kenworthy L., Giedd J.N., Martin A. Longitudinal cortical development during adolescence and young adulthood in autism spectrum disorder: increased cortical thinning but comparable surface area changes // Journal of the American Academy of Child and Adolescent Psychiatry.š— 2015.š— Vol. 54.š— №6.š— P. 464-469.

53. Whitney E.R., Kemper T.L., Bauman M.L., Rosene D.L., Blatt G.J. Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: A stereological experiment using calbindin-D28k / The Cerebellum.š— 2008.š— Vol. 7.š— №. 8.š— P. 406-416

54. Wing L. Asperger’s syndrome: a clinical account // Psychological Medicine.š— 1981.š— Vol. 11.š— №1.š— P. 115-129.

55. Zielinski B.A., Prigge M.B., Nielsen J.A., Froehlich A.L., Abildskov T.J., Anderson J.S., Fletcher P.T., Zygmunt K.M., Travers B.G., Lange N., Alexander A.L., Bigler E.D., Lainhart J.E. Longitudinal changes in cortical thickness in autism and typical development // Brain.š— 2014.š— Vol. 137 (Pt 6).š— P. 1799–1812.


About this article

Authors: Bizyuk A.P., Kolosova T.A., Kats E.E., Sorokin V.M.

Year: 2020

doi: 10.25198/1814-6457-225-95

Editor-in-chief
Sergey Aleksandrovich
MIROSHNIKOV

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
¿ üÌÅËÔÒÏÎÎÏÅ ÐÅÒÉÏÄÉÞÅÓËÏÅ ÉÚÄÁÎÉÅ: ÷åóôîéë ïçõ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
úÁÒÅÇÉÓÔÒÉÒÏ×ÁÎÏ × æÅÄÅÒÁÌØÎÏÊ ÓÌÕÖÂÅ ÐÏ ÎÁÄÚÏÒÕ × ÓÆÅÒÅ Ó×ÑÚÉ, ÉÎÆÏÒÍÁÃÉÏÎÎÙÈ ÔÅÈÎÏÌÏÇÉÊ É ÍÁÓÓÏ×ÙÈ ËÏÍÍÕÎÉËÁÃÉÊ
ó×ÉÄÅÔÅÌØÓÔ×Ï Ï ÒÅÇÉÓÔÒÁÃÉÉ óíé: üÌ № æó77-37678 ÏÔ 29 ÓÅÎÔÑÂÒÑ 2009 Ç.
õÞÒÅÄÉÔÅÌØ: ïÒÅÎÂÕÒÇÓËÉÊ ÇÏÓÕÄÁÒÓÔ×ÅÎÎÙÊ ÕÎÉ×ÅÒÓÉÔÅÔ (ïçõ)
çÌÁ×ÎÙÊ ÒÅÄÁËÔÏÒ: ó.á. íÉÒÏÛÎÉËÏ×
áÄÒÅÓ ÒÅÄÁËÃÉÉ: 460018, Ç. ïÒÅÎÂÕÒÇ, ÐÒÏÓÐÅËÔ ðÏÂÅÄÙ, Ä. 13, Ë. 2335
ôÅÌ./ÆÁËÓ: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 ¿ CIT OSU