Vestnik On-line
Orenburg State University december 22, 2024 š RU/EN
Headings of Vestnik
Pedagogics
Psychology
Other

Search
Vak
áÎÔÉÐÌÁÇÉÁÔ
Orcid
Viniti
üâó ìÁÎØ
Rsl
ìÉÃÅÎÚÉÑ Creative Commons

Septemberš2015, №š9š(184)



Rustanov A.R., Gerasimenko S.A., Shchipkova N.N. THE GEOMETRY OF TENSOR CONHARMONIC CURVATURE AC-MANIFOLDS OF CLASSšC11The main objective is to study the geometry of the curvature tensor conharmonic almost contact metric manifolds classšC11. To this end, following tasks: 1) calculate the basic essential components of curvature tensor conharmonic space of the associated G-structure; 2) explore conharmonic flat manifolds of classšC11; 3) get the identities satisfied by the curvature tensor conharmonic AC-class varietiesšC11; 4) select and explore some subclasses of AC-class varietiesšC11 of differential-geometric invariants of the second order. The paper addressed these problems. We prove the following theorem. Theoremš1: conharmonic flat AC-manifold of classšC11 is Ricci-flat manifold. Theoremš2: conharmonic flat AC-manifold of classšC11 is a manifold of Einstein. Theoremš3: conharmonic flat AC-manifold of classšC11 is a flat manifold. Theoremš4: AC-manifold of classšC11 is a manifold of classšK1 if and only if the AC-manifold of classšC11 is Ricci-flat manifold. Theoremš5: AC-manifold of classšC11 is a manifold of classšK2 if and only if the AC-manifold of classšC11 is Ricci-flat manifold. Theoremš6: AC-manifold of classšC11 is a manifold of classšK3 if and only if the AC-manifold of classšC11 is a flat manifold. Theoremš7: AC-manifold of classšC11, a manifold of classšK4 is a manifold of class Einstein's cosmological constant. In particular, in the case of completeness and continuity is compact and has a finite fundamental group. Theoremš8. AC-manifold of classšC11 dimension greater thanš5 is K4-manifold if and only if it is Ricci flat manifold.Key words: tensor Riemannian curvature, the Ricci tensor, the tensor conharmonical curvature, the conharmonically flat manifold, flat manifold.

Download
References:

1. Kirichenko V.F., Rustanov A.R. Differential geometry of quasi-Sasakian varieties. // Mathematical compilation, ie. 193, № 8, 71-100.

2. Rustanov A.R., Shchipkova N.N. Differential geometry of almost contact metric manifolds of class C11. // Vestnik OSU, № 9 (115), September 2010, p. 65-68.

3. Rustanov A.R., Shchipkova N.N. Curvature identities of varieties of class C11. // Vestnik OSU, number 6 (125), June 2011, p. 169-171.

4. Rustanov A.R., Shchipkova N.N. The geometry of the curvature tensor Concircular AC-manifolds of class C11. // Vestnik OSU, number 9 (170), September 2014, p. 114-120.

5. Rustanov A.R., Shchipkova N.N. The geometry of Weyl conformal curvature tensor AC-manifolds of class C11. // Actual problems of mathematics and related matters. Proceedings of the international scientific conference "Muhtarovskie read." April 22-23. Makhachkala, 2014, p. 89-96.

6. Chinea D., Gonzalez C. Classification of almost contact metric structures. // Annali di Matematica pura ed applicata (IV), v. CLVI, 1990, p. 15–36.

7. Ishii Y. On conharmonic transformations. // Tensor, 7(2), 1957, 73-80.

8. U.C. De, R.N. Singh, Shravan K. Pandey. On the Conharmonic Curvature Tensor of Generalized Sasakian-Space-Forms. // International Scholarly Research Network ISRN Geometry. Volume 2012, Article ID 876276, 14 pages doi:10.5402/2012/876276.

9. V.F. Kirichenko, A.A. Shihab. On the geometry of conharmonic curvature tensor for nearly KÄhler manifolds. // Journal of Mathematical Sciences, September 2011, Volume 177, Issue 5, pp 675-683.

10. Mohit Kumar Dwivedi, Jeong-Sik Kim. On Conharmonic Curvature Tensor in K-contact and Sasakian Manifolds. // Bull. Malays. Math. Sci. Soc. (2) 34(1) (2011), 171–180. http://math.usm.my/bulletin

11. V. F. Kirichenko, A. R. Rustanov, A. A. Shikhab, Geometry of the Conharmonic Curvature Tensor of Almost Hermitian Manifolds, Mat. Zametki, 2011, Volume 90, Issue 1, 87–103. http://www.mathnet.ru/eng/agreement

12. Ali Akbar, Avijit Sarkar, On the Conharmonic and Concircular curvature tensors of almost C(λ) manifolds, International Journal of Advanced Mathematical Sciences (IJMSEA), 1:3 (2013), 134-138.

13. Ali A. Shihab. On the geometry of conharmonic curvtuar tensor of nearly kahler manifold. // Journal of Basrah Researches ((Sciences)) Volume 37. Number 4 C ((2011)), 39 — 48.

14. Ghosh Sujit; De U.C.; Taleshian A. Conharmonic Curvature Tensor on N(K)-Contact Metric Manifolds // ISRN Geometry;2011, Special section p1.

15. Kharitonov S.V. Tensor of normal curvature kongarmonicheskoy locally conformally nearly cosymplectic varieties // Vestnik OSU № 12 (161) / 2013, 182 — 186.


About this article

Authors: Rustanov A.R., Gerasimenko S.A., Shchipkova N.N.

Year: 2015


Editor-in-chief
Sergey Aleksandrovich
MIROSHNIKOV

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
¿ üÌÅËÔÒÏÎÎÏÅ ÐÅÒÉÏÄÉÞÅÓËÏÅ ÉÚÄÁÎÉÅ: ÷åóôîéë ïçõ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
úÁÒÅÇÉÓÔÒÉÒÏ×ÁÎÏ × æÅÄÅÒÁÌØÎÏÊ ÓÌÕÖÂÅ ÐÏ ÎÁÄÚÏÒÕ × ÓÆÅÒÅ Ó×ÑÚÉ, ÉÎÆÏÒÍÁÃÉÏÎÎÙÈ ÔÅÈÎÏÌÏÇÉÊ É ÍÁÓÓÏ×ÙÈ ËÏÍÍÕÎÉËÁÃÉÊ
ó×ÉÄÅÔÅÌØÓÔ×Ï Ï ÒÅÇÉÓÔÒÁÃÉÉ óíé: üÌ № æó77-37678 ÏÔ 29 ÓÅÎÔÑÂÒÑ 2009 Ç.
õÞÒÅÄÉÔÅÌØ: ïÒÅÎÂÕÒÇÓËÉÊ ÇÏÓÕÄÁÒÓÔ×ÅÎÎÙÊ ÕÎÉ×ÅÒÓÉÔÅÔ (ïçõ)
çÌÁ×ÎÙÊ ÒÅÄÁËÔÏÒ: ó.á. íÉÒÏÛÎÉËÏ×
áÄÒÅÓ ÒÅÄÁËÃÉÉ: 460018, Ç. ïÒÅÎÂÕÒÇ, ÐÒÏÓÐÅËÔ ðÏÂÅÄÙ, Ä. 13, Ë. 2335
ôÅÌ./ÆÁËÓ: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 ¿ CIT OSU