Vestnik On-line
Orenburg State University december 22, 2024   RU/EN
Headings of Vestnik
Pedagogics
Psychology
Other

Search
Vak
Антиплагиат
Orcid
Viniti
ЭБС Лань
Rsl
Лицензия Creative Commons

2013, № 1 (150)



Kucherov A.A. ON ALMOST LOCALLY SOLVABLE ALGEBRAS WITH NULL JACOBSON RADICAL AND LOCALLY NILPOTENT RADICAL FOR ALGEBRASThe analog of the F. Kubo theorem for almost locally solvable special Lie algebras with null Jacobson radical is proved in the article. It is also shown, that for special algebras over a characteristic field zero the irreducible PI-presented radical coincides with the locally nilpotent. There is given an example the algebra which locally nilpotent radical is not neither locally nilpotent, nor locally solvable. Key words: Lie algebra, special Lie algebra, irreducible PI-representation, Jacobson radical, locally nilpotent radical, reductive Lie algebra, almost locally solvable algebra.

Download
References:

1 Kubo, F. Infinite-dimensional Lie algebras with null Jacobson radical / F. Kubo // Bull. Kyushu Inst. Technol. Math. Nat. Sci. — 1991. — V. 38. — P. 23–30.

2 Marshall, E. I. The Frattini subalgebras of a Lie algebra / E. I. Marshall // J. London Math. Soc. — 1967. — V. 42. — P. 416–422.

3 Burbaki, N. Lie groups and algebras (chapter I-III) / N. Burbaki. — M. : World, 1976. — 496 p.

4 Kamiya, N. On the Jacobson radicals of infinite-dimensional Lie algebras / N. Kamiya // Hiroshima Math. J. — 1979. — V. 9. — P. 37–40.

5 Latyshev, V. N. On Lie algebras with identical relations / V. N. Latyshev // Sibirian mathematical journal. — 1963. — V. 4.– P. 821–829.

6 Pikhtilkov, S. A. On special Lie algebras / S. A. Pikhtilkov // Russian Mathematical Surveys. — 1981. — V. 36, No 6. — P. 225–226.

7 Billig, Yu.V. On a gomomorphic image of special Lie algebre / Yu. V. Billig // Sbornik: Mathematics. — 1988. — V. 136, No 3. — P. 320–323.

8 Jacobson, N. Lie algebras / N. Jacobson. — M.: World, 1964. — 355 p.

9 Bakhturin, Yu.A. The identities in Lie algebras / Yu. A. Bakhturin. — M.: Nauka, 1985. — 447 p.

10 Terekhova, Yu. A. On Levi theorem for almost locally solvable special Lie algebras / Yu. A. Terekhova // Algorithm problems of groups and semigroups. — Tula, 1994. — Р. 97–103.

11 Herstein, I. Noncommutative rings / I. Herstein. — M. : World, 1972. — 191 p.

12 Pikhtilkov, S. A. On locally nilpotent radical for special Lie algebras / S. A. Pikhtilkov // Fundamental and Applied Mathematics. — 2002. — V. 8, No 3. — P. 769–782.

13 Kucherov, A. A. On homological description of locally nilpotent radical for special Lie algebras / A. A. Kucherov, S. A. Pikhtilkov, O. A. Pikhtilkova // Vestnik OSU. — 2010. — No 9. — P. 40–43.


About this article

Author: Kucherov A.A.

Year: 2013


Editor-in-chief
Sergey Aleksandrovich
MIROSHNIKOV

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
© Электронное периодическое издание: ВЕСТНИК ОГУ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
Зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций
Свидетельство о регистрации СМИ: Эл № ФС77-37678 от 29 сентября 2009 г.
Учредитель: Оренбургский государственный университет (ОГУ)
Главный редактор: С.А. Мирошников
Адрес редакции: 460018, г. Оренбург, проспект Победы, д. 13, к. 2335
Тел./факс: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 © CIT OSU