Vestnik On-line
Orenburg State University november 05, 2024   RU/EN
Headings of Vestnik
Pedagogics
Psychology
Other

Search
Vak
Антиплагиат
Orcid
Viniti
ЭБС Лань
Rsl
Лицензия Creative Commons

2013, № 1 (150)



Rustanov A.R., Shchipkova N.N. DIFFERENTIAL GEOMETRY OF CONTACT METRIC MANIFOLDS OF NС11 CLASSThis paper considers a new class of contact metric manifolds, which generalizes the class of АС-manifolds of the С11 class by the classification of Chinya and Gonzalez. The complete group of structural equations for NC11-manifolds derived, and components of Riemann-Christoffel tensor, Ricci tensor and the scalar curvature are computed basing on these equations. Properties of NC11-manifolds are derived. Some identities of the Riemann curvature tensor are derived, too.Key words: contact metric manifold, Riemann curvature tensor, Ricci tensor, F-holomorphic sectional curvature tensor, cosymplectic manifold.

Download
References:

1 Rustanov, A. R. Differential geometry of contact metric manifold of class С11 / A. R. Rustanov, N. N. Shchipkova // Vestnik OSU. — 2010. — № 9. — P. 65–68.

2 Rustanov, A. R. The identities of the curvature manifolds of class С11 / A. R. Rustanov, N. N. Shchipkova // Vestnik OSU. — 2011. — № 6. — P. 169–171.

3 Kirichenko, V. F. Differential-geometric structures on manifolds / V. F. Kirichenko. — Moscow : Moscow State Pedagogical University, 2003. — 495 p.

4 Chinea, D. Classification of contact metric structures / D. Chinea, C. Gonzalez // Annali di Matematica pura ed applicata. — (IV).V.CLVI. — 1990. — P. 15–36.

5 Kirichenko,V. F. Contact geodesic transformations of contact metric structures / V. F. Kirichenko, N. N. Dondukova // Mathematical notes. — 2006. — Vol. 80, № 2. — P. 209–219.

6 Kirichenko, V. F. Differential geometry of quasi-Sasakian manifolds / V. F. Kirichenko, A. R. Rustanov // Sbornik : mathematics. — 2002. — Vol. 193, № 8. — P. 71–100.

7 Goldberg, S. Integrability of almost cosymplectic structures / S. Goldberg, K. Yano // Pacif. J. Math. — 1969. — Vol. 31, № 2. — P. 373–382.

8 Kirichenko, V. F. Quasihomogeneous manifolds and generalized en-structure / V. F. Kirichenko // Math. USSR Academy of Sciences. — Vol. 47, № 6. — P. 1208–1223.

9 Kirichenko, V. F. Methods of generalized Hermitian geometry in the theory of contact manifolds / V. F. Kirichenko // Results of science and technology. The problems of geometry. — Moscow : VINITI AN SSSR, 1986. — Vol. 18. — P. 25–71.


About this article

Authors: Rustanov A.R., Shchipkova N.N.

Year: 2013


Editor-in-chief
Sergey Aleksandrovich
MIROSHNIKOV

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
© Электронное периодическое издание: ВЕСТНИК ОГУ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
Зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций
Свидетельство о регистрации СМИ: Эл № ФС77-37678 от 29 сентября 2009 г.
Учредитель: Оренбургский государственный университет (ОГУ)
Главный редактор: С.А. Мирошников
Адрес редакции: 460018, г. Оренбург, проспект Победы, д. 13, к. 2335
Тел./факс: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 © CIT OSU