|
|
|
Letuta S.N., Ischemgulov A.T., Paschkevich S.N., Lantukh Yu.D., Alidjanov E.K., Sokabaeva S.S. FLYORESCENT DOSIMETRY IN PHOTODYNAMIC THERAPYThe long-lived photoexcitations relaxation processes of fluorophores in biological tissues with molecular oxygen presence are investigated. This subject has a practical significance because of the active elaboration of photodynamic therapy and optical diagnostic. The futures of delayed fluorescence and phosphorescence in erythrosine stained healthy and cancer-diseased mammary gland tissues of BYRB-line mice were investigated in vitro. The dominant role of diffusive-mobile molecular oxygen in relaxation of triplet-excited long-life states of the dye molecules in cells is determined. A novel phenomenon of suppression of stained tissue delayed fluorescence under pulsed laser irradiation was revealed. The phenomenon was named as light quenching of delayed fluorescence (LQDF). The using of this phenomenon will greatly simplify the determination of the radiation "dose" in photodynamic therapy directly during the treatment session. Statistically certain distinction between delayed fluorescence characterization as well as LQDF extent in healthy and pathological tissues was established.Key words: dosimetry in photodynamic therapy, optical diagnostic of pathologies, fluorophores, delayed fluorescence.
References:
1. Krasnovskiy A.A. (ml.) Fotodinamicheskoe deystvie i singletnyiy kislorod // Biofizika. — 2004. — T.49. — vyip.2. — S. 305-321.
2. Egorov S.Yu., Zinukov S.V., Kamalov V.F., Koroteev N.I., Krasnovskiy A.A. (ml.), Toleutaev B.N. Izmerenie kinetiki footosensibilizirovannoy lyuminestsentsii singletnogo molekulyarnogo kisloroda s nanosekundnyim razresheniem // Optika i spektroskopiya. — 1988. — T.65. — vyip.4. — S. 899-903.
3. Krasnovskiy A.A. (ml.) Fotosensibilizirovannaya fosforestsentsiya singletnogo molekulyarnogo kisloroda: metodyi izmereniya i primenenie k analizu mehanizmov fotodestruktivnyih protsessov v kletkah // Uspehi biologicheskoy himii. — 1999. — T.39. — S. 255-288.
4. Kucherenko M.G. Kinetika nelineynyih fotoprotsessov v kondensirovannyih molekulyarnyih sistemah / Orenburg: OGU, 1997. — 386 s.
5. Kucherenko M.G. O kinetike reaktsii singletnogo kisloroda s nepodvizhnyimi sensibilizatorami // Him. fiz. — 2001. — T. 20. — # 3. — S. 31-36.
6. Letuta S.N., Kuvandykova A.F., Pashkevich S.N., Saletskii A.M. Features of the delayed fluorescence kinetics of exogenous fluorophores in biological tissues // Russian Journal of Physical Chemistry A. — 2013. — V. 87. — P. 1582–1587.
7. Woodhams J.H., MacRobert A.J., Bown S.G. The role of oxygen monitoring during photodynamic therapy and its potential for treatment dosimetry // Photochem. Photobiol. Sci. — 2007. — V. 6. — P. 1246–1256.
8. Jarvi M.T., Patterson M.S., Wilson B.C. Singlet Oxygen Luminescence Dosimetry (SOLD) for Photodynamic Therapy: Current Status, Challenges and Future Prospects // Biophys. J. — 2012. — V. 102. — P. 661–671.
9. Mallidi S., Anbil S., Lee S., Manstein D., Elrington S., Kositratna G., Schoenfeld D., Pogue B., Davis S.J., Hasan T. Photosensitizer fluorescence and singlet oxygen luminescence as dosimetric predictors of topical 5-aminolevulinic acid photodynamic therapy induced clinical erythema // J. Biomed. Opt. — 2014. — V. 19(2). — P. 028001.
10. Celli J.P., Spring B.Q., Rizvi I., Evans C.L., Samkoe K.S., Verma S., Pogue B.W., Hasan T. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization // Chem. Rev. — 2010. — V. 110. — P. 2795–2838.
11. Niedre M., Patterson M. S., Wilson B.C. Imaging of photodynamically generated singlet oxygen luminescence in vivo // Photochem. Photobiol. — 2002. — V. 75. — P. 382–391.
12. Snyder J.W., Skovsen E., Lambert J.D.C., Poulsen L., Ogilby P.R. Optical detection of singlet oxygen from single cells // Phys. Chem. Chem. Phys. — 2006. — V. 8. — P. 4280–4293.
13. Li B., Lin H., Chen D., Wilson B.C., Gu Y. Singlet oxygen detection during photosensitization // J. Innov. Opt. Health Sci. — 2013. — V. 6. — P. 1330–1332.
14. Mik E.G., Johannes T., Zuurbier C.J., Heinen A., Houben-Weerts J.H.P.M., Balestra G.M., Stap J., Beek J.F., Ince C. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique // Biophys. J. — 2008. — V. 95. — P. 3977–3990.
15. Ragаs X., Jimйnez-Banzo A., Sбnchez-Garcнa D., Batllori X., Nonell S. Singlet oxygen photosensitisation by the fluorescent probe Singlet Oxygen Sensor Green // Chem. Commun. — 2009. — V. 20. — P. 2920–2922.
16. Gollmer A., Arnbjerg J., Blaikie F. H., Pedersen B. W., Breitenbach T., Daasbjerg K., Glasius M., Ogilby P. R. Singlet Oxygen Sensor Green: photochemical behavior in solution and in a mammalian cell // Photochem. Photobiol. — 2011. — V. 87. — P. 671–679.
17. Flors C., Fryer M. J., Waring J., Reeder B., Bechtold U., Mullineaux P. M., Nonell S., Wilson M. T., Baker N. R. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor // J. Exp. Bot. — 2006. — V. 57. — P. 1725–1734.
18. Shen Y., Lin H., Huang Z., Chen D., Li B., Xie S. Indirect imaging of singlet oxygen generation from a single cell // Laser Phys. Lett. — 2011. — V. 8. — P. 232–238.
19. Piffaretti F., Novello A.M., Kumar R.S., Forte E. Paulou C., Nowak-Sliwinska P., van den Bergh H., Wagniиres G. Real-time, in vivo measurement of tissular pO2 through the delayed fluorescence of endogenous protoporphyrin IX during photodynamic therapy // Journal of Biomedical Optics. — 2012. — V. 17 (11). — P. 115007.
20. Korınek M., Dedic R., Molnar A., Hala J. The Influence of Human Serum Albumin on The Photogeneration of Singlet Oxygen by meso-Tetra(4-Sulfonatophenyl)Porphyrin. An Infrared Phosphorescence Study // Journal of Fluorescence. — 2006. — V. 16. — P. 355–359.
21. Scholz M., Dedic R., Breitenbach T., Hala J. Singlet oxygen-sensitized delayed fluorescence of common water-soluble photosensitizers // Photochem. Photobiol. Sci. — 2013. — V. 12. — P. 1873–1884.
22. Sterenborg H. J. C. M., de Wolf J.W., Koning M., Kruijt B., van den Heuvel A., Robinson D. J. Phosphorescence-Fluorescence ratio imaging for monitoring the oxygen status during photodynamic therapy // Optics Exrpess. — 2004. — V. 9 (12). — P. 1873–1878.
23. Letuta S.N., Kuvandyikova A.F., Pashkevich S.N., Saletskiy A.M. Lazernoe initsiirovanie zamedlennoy fluorestsentsii ekzogennyih fluoroforov v biologicheskih tkanyah // Vestnik OGU. — 2012. — T. 12 (148). — S. 117–121.
24. Letuta S.N., Maryahina V.S., Pashkevich S.N., Rahmatullin R.R. Kinetika dlitelnoy lyuminestsentsii molekulyarnyih zondov v kletkah biologicheskih tkaney // Vestnik OGU. — 2011. — T. 1 (120). — S. 182–186.
25. Letuta S.N., Maryahina V.S., Pashkevich S.N., Rahmatullin R.R. Dlitelnaya lyuminestsentsiya organicheskih krasiteley v kletkah biologicheskih tkaney // Optika i spektroskopiya. — 2011. — T. 110. — S. 72-75.
26. Redmond R.W., Gamlin J.N. A Compilation of Singlet Oxygen Yields from Biologically Relevant Molecules // Photochem. and Photobiol. — 1999. — V. 70(4). — P. 391-475.
27. Veuthey T., Herrera G., Dodero V.I. Dyes and Stains: from molecular structure to histological application // Frontiers in Bioscience. — 2014. — V. 19. — P. 91–112.
28. Uzdenskiy A.B. Kletochno-molekulyarnyie mehanizmyi fotodinamicheskoy terapii / SPb.: Nauka. — 2010. — C. 20.
29. Baker A., Kanofsky Jr. // Photochem Photobiol., 55, 1992, 523-528.
30. Timoshinko V. // Sensors for Environment, Health and Security / M.-I. Baraton (ed.) Springer Science Business Media B.V., 2009.
31. Buettner G.R. // Free radical and Radiation Biology & ESR Facility, MEd labs B180, 14/04/11. http://www.photobiology.info/Buettner.html
About this article
Authors: Alidzhanov E.K., Ishemgulov A.T., Lantuh Yu.D., Pashkevich S.N., Letuta S.N., Sokabaeva S.S.
Year: 2015
|
|
Editor-in-chief |
Sergey Aleksandrovich MIROSHNIKOV |
|
|