Kucherov A.A. ON ALMOST LOCALLY SOLVABLE ALGEBRAS WITH NULL JACOBSON RADICAL AND LOCALLY NILPOTENT RADICAL FOR ALGEBRASThe analog of the F. Kubo theorem for almost locally solvable special Lie algebras with null Jacobson radical is proved in the article. It is also shown, that for special algebras over a characteristic field zero the irreducible PI-presented radical coincides with the locally nilpotent. There is given an example the algebra which locally nilpotent radical is not neither locally nilpotent, nor locally solvable. Key words: Lie algebra, special Lie algebra, irreducible PI-representation, Jacobson radical, locally nilpotent radical, reductive Lie algebra, almost locally solvable algebra.
References:
1 Kubo, F. Infinite-dimensional Lie algebras with null Jacobson radical / F. Kubo // Bull. Kyushu Inst. Technol. Math. Nat. Sci. — 1991. — V. 38. — P. 23–30.
2 Marshall, E. I. The Frattini subalgebras of a Lie algebra / E. I. Marshall // J. London Math. Soc. — 1967. — V. 42. — P. 416–422.
3 Burbaki, N. Lie groups and algebras (chapter I-III) / N. Burbaki. — M. : World, 1976. — 496 p.
4 Kamiya, N. On the Jacobson radicals of infinite-dimensional Lie algebras / N. Kamiya // Hiroshima Math. J. — 1979. — V. 9. — P. 37–40.
5 Latyshev, V. N. On Lie algebras with identical relations / V. N. Latyshev // Sibirian mathematical journal. — 1963. — V. 4.– P. 821–829.
6 Pikhtilkov, S. A. On special Lie algebras / S. A. Pikhtilkov // Russian Mathematical Surveys. — 1981. — V. 36, No 6. — P. 225–226.
7 Billig, Yu.V. On a gomomorphic image of special Lie algebre / Yu. V. Billig // Sbornik: Mathematics. — 1988. — V. 136, No 3. — P. 320–323.
8 Jacobson, N. Lie algebras / N. Jacobson. — M.: World, 1964. — 355 p.
9 Bakhturin, Yu.A. The identities in Lie algebras / Yu. A. Bakhturin. — M.: Nauka, 1985. — 447 p.
10 Terekhova, Yu. A. On Levi theorem for almost locally solvable special Lie algebras / Yu. A. Terekhova // Algorithm problems of groups and semigroups. — Tula, 1994. — Р. 97–103.
11 Herstein, I. Noncommutative rings / I. Herstein. — M. : World, 1972. — 191 p.
12 Pikhtilkov, S. A. On locally nilpotent radical for special Lie algebras / S. A. Pikhtilkov // Fundamental and Applied Mathematics. — 2002. — V. 8, No 3. — P. 769–782.
13 Kucherov, A. A. On homological description of locally nilpotent radical for special Lie algebras / A. A. Kucherov, S. A. Pikhtilkov, O. A. Pikhtilkova // Vestnik OSU. — 2010. — No 9. — P. 40–43.
About this article
Author: Kucherov A.A.
Year: 2013
|