|
|
|
Zakirullin R.S., Odenbakh I.A. OPTIMIZATION OF SMART-WINDOW PARAMETERS WITH THE ACCOUNT OF GEOGRAPHICAL COORDINATES OF A BUILDINGThe results of calculation of the optimal angle of inclination of the filter gratings on the smart windows with angular selective light transmission at double glazing, a constant azimuth of the orientation of the windows to the cardinal, for different geographical latitudes with the same longitude of a building are presented. For comparison, the calculations are made for the middle of the hottest period of the year and the day with maximum solar radiation. Calculations have also been made for cities located in different hemispheres and having not only different latitudes but also longitudes. Angular selectivity of light transmission of a smart window is achieved by using in a window structure an optical filter with two inclined surface gratings consisting of absorbing, reflecting or scattering parallel strips. The possibility of angular selective filtering of direct solar radiation is shown taking into account the geographic coordinates of the building, the solar trajectory, the seasonal and daily distribution of solar radiation intensity. Smart windows with optical filters are designed to provide hygienic requirements for natural and artificial illumination and insolation, given in Sanitary and Epidemiological Regulations and Standards SanPiN 2.1.2.2645-10 “Sanitary and Epidemiological Requirements for Living Conditions in Residential Buildings and Premises”. Key words: solar radiation, grating optical filter, angular selective characteristic, directional light transmission, optimal inclination angle, latitude, longitude, hygienic norms.
References:
1. Höhn, O., Kraus, T., Bauhuis, G., Schwarz, U.T., Bläsi, B. Maximal power output by solar cells with angular confinement. — Opt. Express. — 22 (S3). — A721. — 2014.
2. Gruneisen, M.T, Sickmiller, B.A., Flanagan, M.B., Black, J.P., Stoltenberg, K.E., Duchane, A.W. Adaptive spatial filtering of daytime sky noise in a satellite quantum key distribution downlink receiver. — Optical Engineering. — 55 (2). — 026104. — 2016.
3. Peters, M., Goldschmidt, J.C., Loeper, P., Bläsi, B., Willeke, G. Lighttrapping with angular selective filters. — Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition. — Valencia, Spain. — 1-5 September 2008.
4. Shanbhogue, H.G., Nagendra, C.L., Annapurna, M.N., Kumar, S.A., Thutupalli, G.K.M. Multilayer antireflection coatings for the visible and near-infrared regions. — Appl. Opt. — 36. — P. 6339–6351. — 1997.
5. Kennedy, S. R., Brett, M. J. Porous Broadband Antireflection Coating by Glancing Angle Deposition. — Appl. Opt. — 42, No. 22. — P. 4573–4579. — 2003.
6. Berning, P.H. Principles of design of architectural coatings. — Appl. Opt. — 22. — P. 4127–4141. — 1983.
7. Horowitz, F., Pereira, M.B., de Azambuja, G.B. Glass window coatings for sunlight heat reflection and co-utilization. — Appl. Opt. — 50. — C250–C252. — 2011.
8. Mazilu, M., Miller, A., Donchev, V.T. Modular Method for Calculation of Transmission and Reflection in Multilayered Structures. — Appl. Opt. — 40. — P. 6670–6676. — 2001.
9. Лапшин, Б., Петраков, В. Синтез оптических многослойных фильтров. — Компоненты и технологии. — 10. — С. 150–153. — 2006.
10. G. Bader, G., Ashrit, P. V., Truong, V.-V. Transmission and Reflection Ellipsometry of Thin Films and Multilayer Systems. — Appl. Opt. — 37. — P. 1146–1151. — 1998.
11. Look, D.C., Johnson, W.L. Transmittance of photochromic glass at environmental extremes. — Appl. Opt. — 18. — P. 595–597. — 1979.
12. Ferrari, J. A., Perciante, C. D. Two-state model of light induced activation and thermal bleaching of photochromic glasses: theory and experiments. — Appl. Opt. — 47. — P. 3669–3673. — 2008.
13. Nikonorov, N.V., Sidorov, A.I., Tsekhomski, V.A., Vinogradova, O.P. Low-threshold nonlinear-optical response of photochromic glasses with copper chloride nanocrystals. — J. Opt. Technol. — 75. — P. 809–812. — 2008.
14. Crow, I.D., Borrelli, N.F., Seward III, T.P., Chodak, J. Lightguiding in Photochromic Glasses. — Appl. Opt. — 14. — P. 580–585. — 1975.
15. Gao, Y., Luo, H., Zhang, Z., Kang, L., Chen, Z., Du, J., Kanehira, M., Cao, C. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing. — Nano Energy. — 1 (2). — P. 221–246. — 2012.
16. Seeboth, A., Ruhmann, R., Mühling, O. Thermotropic and Thermochromic Polymer Based Materials for Adaptive Solar Control. — Materials. — 3. — P. 5143–5168. — 2010.
17. Andersson, A.M., Granqvist, C.G., Stevens, J.R. Electrochromic LixWO3/poymer laminate/LiyV2O5 device: toward an all-solid-state smart window. — Appl. Opt. –28. — P. 3295–3302. — 1989.
18. Niklasson, G.A., Granqvist, C.G. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. — 17. — P. 127–156. — 2007.
19. Hamberg, I., Granqvist, C.G. Color properties of transparent and heat-reflecting MgF2-coated indium-tin-oxide films. — Appl. Opt. — 22. — P. 609–614. — 1983.
20. Cимовский, К.Р. О материальных параметрах метаматериалов (Обзор). — Оптика и спектроскопия. — 107, № 5. — С. 766–793. — 2009.
21. Simovski C.R. On electromagnetic characterization and homogenization of nanostructured metamaterials. — J. Opt. — 13. — 013001. — 2011.
22. Hamberg, I., Svensson, J.S.E.M., Eriksson, T.S., Granqvist, C.G., Arrenius, P., Norin, F. Radiative cooling and frost formation on surfaces with different thermal emittance: theoretical analysis and practical experience. — Appl. Opt. — 26, No. 11. — P. 2131–2136. — 1987.
23. Ribbing, C.G. Beryllium oxide: a frost-preventing insulator. — Opt. Lett. — 15. — P. 882–884. — 1990.
24. Куренкова, Е. Гардины, шторы, жалюзи. — М.: Дом, 2008. — 210 с.
25. Куропаткина, М.В. Ставни, навесы, жалюзи. — М.: Вече, 2006. — 192 с.
26. McNeil, A., Jonsson, J.C., Appelfeld, D., Ward, G., Lee, E.S. A validation of a ray-tracing tool used to generate bi-directional scattering distribution functions for complex fenestration systems. — Solar Energy. — 98. — P. 404–414. — 2013.
27. Andersen, M. Light distribution through advanced fenestration systems. — Building Research & Information. — 30, No. 4. — P. 264–281. — 2002.
28. Fernandes, L.L., Lee, E.S., McNeil, A., Jonsson, J.C., Nouidui, T., Pang, X., Hoffmann, S. Angular selective window systems: Assessment of technical potential for energy savings. — Energy and Buildings. — 90. — P. 188–206. — 2015.
29. Blanc, P., Espinar, B., Geuder, N., Gueymard, C., Meyer, R., Pitz-Paal, R., Reinhardt, B., Renne, D., Sengupta, M., Wald, L., Wilbert, S. Direct normal irradiance related definitions and applications: The circumsolar issue. — Solar Energy. — 110. — P. 561–577. — 2014.
30. Page, J., Albuisson, M., Wald, L. The European Solar Radiation Atlas: A valuable digital tool. — Solar Energy. — 71 (1). — P. 81–83. — 2001.
31. Lee, T., Oppenheim, D., Williamson, T.J. Australian Solar Radiation Data Handbook. Energy Research and Development Corporation, Canberra. — 1995.
32. Marion, W., George, R. Calculation of solar radiation using a methodology with worldwide potential. — Solar Energy. — 71 (4). — P. 275–283. — 2001.
33. Gueymard, C. The sun's total and spectral irradiance for solar energy applications and solar radiation models. — Solar Energy. — 76 (4). — P. 423–453. — 2004.
34. Zakirullin, R.S. Сreating optical filters with angular-selective light transmission. — Appl. Opt. — 54, No. 21. — P. 6416–6419. — 2015.
35. Zakirullin, R.S., Letuta, S.N. A smart window for angular selective filtering solar radiation. — Solar Energy. — 120. — P. 585–592. — 2015.
36. Пат. 2509324 Российская Федерация. Способ регулирования направленного светопропускания / Закируллин Р.С. — № 2012130148/28; заявл. 17.07.12; опубл. 10.03.14, Бюл. № 7. — 3 с.
37. Закируллин, Р.С. Способ оптимизированной угловой селективной фильтрации солнечного излучения. — Вестник Оренбургского гос. ун-та. — 8. — С. 182–189. — 2017.
About this article
Authors: Odenbah I.A., Zakirullin R.S.
Year: 2017
|
|
Editor-in-chief |
Sergey Aleksandrovich MIROSHNIKOV |
|
|