Kucherenko M.G. NANOBALL DYNAMIC POLARIZABILITY IN THE CASE OF A DEGENERATE ELECTRONIC GAS AND ITS ROLE IN ENERGY TRANSFER PLASMA MECHANISM The author shows how the degeneracy of electronic gas in spherical metal nanoparticles effect on the resonance behavior of the dipole polarizability in monochromatic electromagnetic field on the optical frequencies with dissipative processes in a conductor (complex dielectric permittivity). Frequency dependence of the imaginary and the real parts of polarizability of a spherical nanoparticles are obtained in the form of graphs for different values of particle radius, length of Thomas-Fermievskiyof shielding and damping constant. The author provides expressions for speed radiationless transfer of energy between the molecules in the vicinity of nanoparticles, and rate of energy to it, which include dynamic polarisability on nanoball with a degenerate electronic gas. Key words: polarisability spherical nanoparticles, a degenerate electronic gas, Thomas-Fermievskiy, shielding, energy transfer, plasmons.
References:
1. Gersten J., Nitzan A. Spectroscopic properties of molecules interacting with small dielectric particles // J. Chem. Phys. 1981. -V. 75. 1139; doi:10.1063 /1.442161 (14 pages).
2. Gersten J. I., Nitzan A. Accelerated energy transfer between molecules near a solid particle // Chem. Phys. Letters. 1984. V. 104. -Issue 1. –P. 31-37.
3. Hua X.M., Gersten J. I., Nitzan A. Theory of energy transfer between molecules near solid state particles // J. Chem. Phys. 1985. V. 83. — Iss. 7. –P. 3650 -3659.
4. Klimov V. V., Letokhov V. S. Resonance interaction between two atomic dipoles separated by the surface of a dielectric nanosphere // Phys. Rev. A. 1998. –V. 58. N 4. –P. 3235-3247.
5. Novotny L., Hecht B. Principles of Nano-Optics. Cambridge University Press, New York, 2006. -539 p.
6. Govorov A.O., Lee J., Kotov N.A. Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparticles // Phys. Rev. B. 2007. — V. 76. -P. 125308.
7. Durach M., Rusina A., Klimov V. I., Stockman M. I. Nanoplasmonic renormalization and enhancement of Coulomb interactions // New J. Phys. 2008. V.10. 105011.
8. Kucherenko M. G., Chmereva T. M., Kislov D. A. Energy Transfer in Molecular Systems at the Surface of Metal Solids and Nanoparticles // High Energy Chemistry. 2009. Vol. 43. -No. 7. -P. 587-591.
9. Marocico C. A., Knoester J. Intermolecular resonance energy transfer in the presence of a dielectric cylinder // Phys. Rev. A 79. 2009. P. 053816 (1-15)
10. Davis T. J., Gomez D. E., Vernon K. C. Interaction of molecules with localized surface plasmons in metallic nanoparticles // Phys. Rev. B 81. 2010. –P. 045432 (1-11)
11. Chung H. Y., Leung P. T., Tsai D. P. Enhanced Intermolecular Energy Transfer in the Vicinity of a Plasmonic Nanorice // Plasmonics. 2010. DOI 10.1007/s11468-010-9151-x. # Springer Science+Business Media, LLC 2010
12. Pustovit V. N., Shahbazyan T.V. Resonance energy transfer near metal nanostructures mediated by surface plasmons // Phys. Rev. B. 2011. V.83. –P. 085427 (1-5).
13. Kucherenko M.G., Kislov D.A., Chmereva T.M. Increase of качества FRET-SNOM images qualities by means of plasmonic resonance in nanoantennas // Proc. Internat. Science Conference: “Science and Education: Fundamentals, Technologies, Innovations”. Part 5. Orenburg: OSU. 2010. — 369 p. — P. 351-356 (in Russian).
14. Kucherenko M.G., Chmereva T.M. Processes with participation of electron-excited molecules on solid adsorbent surfaces. Orenburg: Orenburg State University. 2010. -346 p. (in Russian).
15. Kucherenko М.G., Chmereva T.M. , Kislov D.А. Increase of radiationless electronic excitation energy transfer rate between molecules placed near a solid flate surface // Vestnik OGU. 2011. #1. P. 170-181. (in Russian). http://vestnik.osu.ru/2011_1/30.pdf
16. Davydov A.S. Theory of Solid State. Moscow: Nauka. 1976. (in Russian). 639 p.
17. Landau L.D., Lifshitz E.M. Quantum Mechanics: Non-Relativistic Theory. Vol. III. Moscow: Nauka. 1974. — 752 p.
18. Born M., Wolf E. Principles of Optics. Electromagnetic theory of propagation, interference and diffraction of light. Forth edition. Pergamon Press. Oxford-London-Edinburgh-New York-Raris-Frankfurt. 1968.
19. Mie G. // Ann. der Physik. 1908. -Vol. 25. –P. 377-445.
20. Smirnov M.B., Krainov V.P. Many-time ionization Thomas-Fermi's cluster by power electromagnetic field // JETPH. 1999. -Vol. 115. -#. 6. –P. 2014-2019.
21. Krainov V.P., Smirnov M.B. Evolution of large clusters under action of ultra-short superpower laser pulse // Uspekhi Fiz. Nauk. 2000. -Vol. 170. -# 9. –P. 969-990.
22. Gadomsky O.N., Shalin A.S. Electronic states in metallic clusters // JETPH. 2007. –Vol. 131. — #. 5. –P. 5-13.
23. Landau L.D., Lifshitz E.M. Electrodynamics of Continuous Media. Vol. VIII. Moscow: FIZMATLIT. 2003. — 656 p.; (Pergamon, New York, 1960).
About this article
Author: Kucherenko M.G.
Year: 2012
|