|
|
|
Ryuichi Kikkawa, Yoshiya Inokuchi, Takayuki Ebata, Hiroyuki Saigusa MASS SPECTROMETRY FOR NONVOLATILE FUNCTIONAL MOLECULES BY LASER DESORPTION/VACUUM-ULTRAVIOLET PHOTOIONIZATION METHODLaser desorption (LD)/vacuum ultraviolet (VUV) photoionization (PI) mass spectrometry (LD/VUVPI MS) is presented for nonvolatile bio-related aromatic molecules (tyramine, L-phenylalanine and L-tyrosine) and functional molecules (dibenzo-18-crwon-6-ether, calix[4]arene, calix[8]arene and calix[4]resorcinarene). A pellet of the sample mixed with graphite matrix was irradiated by IR laser for the desorption and the vaporized sample was ionized by a vacuum ultraviolet light at 10.5 eV, which was obtained by the high harmonic generation of Nd:YAG laser light. The ionized sample was mass analyzed by a time-of-flight mass spectrometer. LD/VUVPI mass spectrometry has been successfully carried out for the molecules examined. It was found that the bio-related aromatic molecules exhibit considerable fragmentation by the ionization at 10.5 eV, while those of the functional molecules show strong peak at the parent mass with less fragmentation.
References:
1. Karas M., Bachmann D., Hillenkamp F., Anal. Chem., 57, 2935, (1985).
2. Karas M., Hillenkamp F., Anal. Chem., 60, 2299, (1988).
3. Tanaka K., Waki H., Ido Y., Akita S.,Yoshida Y., Yoshida T., Rapid Commun.Mass Spectrom., 2, 151, (1988).
4. Karas M., Bachmann D., Bahr U., Hillenkamp F., Int. J. Mass Spectrom. Ion Processes, 78, 53, (1987).
5. Wong S. F., Meng C. K., Fenn J. B., J. Phys. Chem., 92, 546, (1988).
6. Tanaka Y., Jursa A. S., Blanc F. J., J. Opt. Soc. Am. B, 48, 304, (1958).
7. McCusker, M. Top. Appl. Phys. 30, 47, (1984).
8. Gellert B. B., Kogelschatz U., Appl. Phys. B. 52, 14, (1991).
9. Heimann P. A., Koike M., Rev. Sci. Instrum. 68, 1945, (1997).
10. Vidal C. R., In Tunable Lasers; Mollenauer L. F., White J. C., Eds.; Springer-Verlag: Berlin, 59, 56, (1987).
11. Maker P. D., Terhune, R. W., Phys. Rev. 137 (3A), 801, (1965).
12. Bjorklund G. C., IEEE J. Quantum Electron. QE-11 6, 287, (1975).
13. Inokuchi Y., Kobayashi Y., Ito T., and Ebata T.. J. Phys. Chem. A, 111, 3209, (2007).
14. Kusaka R., Inokuchi Y., and Ebata T. , Phys. Chem. Chem. Phys., 9, 4452, (2007).
15. Kusaka R., Inokuchi Y., and Ebata T. , Phys. Chem. Chem. Phys., 10, 6238, (2008).
16. Kusaka R., Inokuchi Y., Ebata T. , Phys. Chem. Chem. Phys., 11, 9132, (2009).
17. Hontama N., Inokuchi Y., Ebata T., J. Phys. Chem. A, 114, 2967, (2010).
18. Pan Y., Zhang T., Hong X., Zhang Y., Sheng L., Qi F., Rapid Commun. Mass Spectrom., 22, 1619, (2008).
19. Nir E., Heinrich E. Hunziker, and de Vries M. S., Anal. Chem., 71, 1674, (1999).
20. Saigusa H., Tomioka A., Katayama, T. Iwase E., Chem. Phys. Lett. 418, 119, (2006).
21. Matsuda Y., Mori M., Hachiya M., Fujii A. and Mikami N., J. Chem. Phys., 125, 164320, (2006).
22. Matsuda Y., Mori M., Masaki M., Fujii A. and Mikami N., Chem. Phys. Lett. 422, 378, (2006).
23. Domelsmith L. N., Munchausen, L, L., Houk K. N., J. Am. Chem. Soc. 99, 4311, (1977).
24. Tembreull R., Lubman D. M., Anal. Chem. 59, 1082, (1987).
25. http://webbook.nist.gov/cgi/cbook.cgi?ID=C60184&Units=SI&Mask=200#Mass-Spec
26. Baker, A. D., Armen, G. H., Funaro S., J. Chem. Soc. Dalton Trans., 2519, (1983).
27. Ebata T., Hontama N., Inokuchi Y., Haino T., Apra E., Xantheas S. S., Phys. Chem. Chem. Phys., 12, 4569, (2010).
28. Muhlberger F., Wieser J., Ulrich A., and Zimmermann R., Anal. Chem., 74, 3790, (2002).
29. Mysak E. R., Wilson K. R. , Jimenez-Cruz M., Ahmed M., Baer T., Anal. Chem., 77, 5953, (2005).
30. Tembreull R., Lubman D. M. , Anal. Chem.,59, 1082, (1987).
31. Lykke K. R., Parker D. H. , Wurz P., Hunt J. E., Pellin M.J., Gruen D. M., Hemminger J. C., Anal. Chem. 64, 2797, (1992).
About this article
Authors: Nirouiki Saigisa, Ruiishi Kikkawa, Takauiki Ebata, Yoshiua Inokishi
Year: 2011
|
|
Editor-in-chief |
Sergey Aleksandrovich MIROSHNIKOV |
|
|