Vestnik On-line
Orenburg State University may 04, 2024   RU/EN
Headings of Vestnik
Pedagogics
Psychology
Other

Search
Vak
Антиплагиат
Orcid
Viniti
ЭБС Лань
Rsl
Лицензия Creative Commons

June 2015, № 6 (181)



Petukhov V.I., Shchukov A.N. ABOUT THE JUSTIFIABILITY OF THE ELEMENTAL ANALYSIS DATA EXTRAPOLATION OF THE HUMAN HAIR TO THE TOTAL BODYIn recent years, the method of quantitative atomic emission spectrometry of bio-substrates such as human hair has become very popular in determination of person's elemental status. However, in recent publications on the topic questions about the relationship between elemental hair composition and the total body mineral content has been raised and requires special discussion. This article contents an attempt of such discussion. According to atomic emission spectrometry data, concentration values of chemical elements (including but not limited to metals), which are contained in hair, show expressed individual variation. This very fact suggests that the observed shifts may be caused not nearly by 'hypo- or hyperelementosis' but by redistribution of chemical elements mediated by intra- and extracellular regulators of transmembrane mineral traffic which has practically no effect on the total body elemental composition. There are many factors to be considered in determining the most probable causes of quantitative shifts in metal-ligand homeostasis (MLH). Their distinguishing feature is the capacity of activation or deactivation (up to a total block) of ionic channels — hydrous pores of transmembrane proteins, which are in charge of metals transfer. Activation of ligand-activated channels may take place due to redox-modification of thiol groups of cysteine in the molecule of proteins-transporters. Among the latter ones is the P-type ATPases superfamily, which ensures the transportation of not just electrogenic (Ca, Na, K) but also heavy metals (Cd, Zn, Pb, Cu, Co). Active oxygen species (AOS) and active nitrogen species (АNS), which are constantly formed in cells, fulfil the function of redox-modifiers of cysteine residues in the molecule of membrane pumps (oxidation with formation of disulphide bonds, S-nitrosylation). Having said this, one cannot exclude that increased production of AOS and АNS (oxidative/nitrosative stress) which may cause further activation of P-type ATPases. Therefore, in the setting of oxidative/nitrosative stress, we may expect quantitative shifts in intracellular concentrations of not just electrogenic but also heavy metals (transfer of the latter is affected by P1B-type-pump from the superfamily of ATPases). Does it mean that hair is not a very "reliable" substrate for MLH evaluation? Answering this question, it is necessary to notice that the problem is not with the substrate but with interpretation of metal-ligand homeostasis' variations in epidermal cells meter mined by spectrometry.

Download
References:

1. Petukhov V. I., Dmitriyev E.V., Shkesters A.P., Rocky A.V. Problems of an integrated assessment of the element status of the person according to spectrometry of hair. Microcells in medicine. No. 7, S.7-14, 2006.

2. Petukhov V.I., Baumane L., Dmitriev Е.V., Vanin A.F. Nitric oxide and electrogenic metals (Ca, Na, K) in epidermal cells. Biochemistry (Moscow) Supplement Series B Biomedical Chemistry. V. 8, No 4, pp. 343-348, 2014.

3. Nilius B. and Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev 81: 1415–1459, 2001.

4. Marchenko S.M. and Sage SO. Smooth muscle cells affect endothelial membrane potential in rat aorta. Am J Physiol Heart Circ Physiol 267: H804–H811, 1994.

5. Aalkjaer C. and Nilsson H. Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol 144: 605–616, 2005.

6. Mauban J.R. and Wier W.G. Essential role of EDHF in the initiation and maintenance of adrenergic vasomotion in rat mesenteric arteries. Am J Physiol Heart Circ Physiol 287:H608–H616, 2004.

7. Okazaki K., Seki S., Kanaya N., Hattori J., Tohse N., and Namiki A. Role of endothelium-derived hyperpolarizing factor in phenylephrine-induced oscillatory vasomotion in rat small mesenteric artery. Anesthesiology 98:1164–1171, 2003.

8. Haddock R.E., Hirst G.D., and Hill C.E. Voltage independence of vasomotion in isolated irideal arterioles of the rat. J Physiol 540: 219–229, 2002.

9. Lamboley M., Schuster A., Beґny J.L., and Meister J.J. Recruitment of smooth muscle cells and arterial vasomotion. Am J Physiol Heart Circ Physiol 285: H562–H569, 2003.

10. Koenigsberger M., Sauser R., Beґny J.L., and Meister J.J. Effects of arterial wall stress on vasomotion. Biophys J 91: 1663–1674, 2006.

11. Koenigsberger M., Sauser R., Beґny J.L., and Meister J.J. Role of the endothelium on arterial vasomotion. Biophys J 88: 3845–3854, 2005.

12. Koenigsberger M., Sauser R., Lamboley M., Beґny J.L, and Meister J.J. Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. Biophys J. 87: 92–104, 2004.

13. Axelsen, K.B., Palmgren, M.G. J. Mol. Evol. 46: 84-101, 1998.

14. Argьello, J.M. J. Membrane Biol. 195: 93-108, 2003.

15. Argьello, J.M., Eren, E. Biometals. 20: 233-248, 2007.

16. Yano, M. Circ.J. 72: 509-514, 2008.

17. Sun, J., Yamaguchi, N., Xu, L., Eu, J.P., Stamler, J.S., and Meissner, G. Biochemistry. 47: 13985-13990, 2008.

18. Yan, Y., Liu, J., Weil, C., Li, K., Xie, W., Wang, Y., and Cheng, H. Cardiovasc. Res. 77: 432-441, 2008.

19. Gyorke, S., and Terentyev, D. Cardiovasc. Res. 77, 245-255, 2008.

20. Southam E., and Garthwaite J. Comparative effects of some nitric oxide donors on cyclic GMP levels in rat cerebellar slices. Neurosci Lett 130: 107-111, 1991.

21. Shinbo A., and Iijima T. Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells. Br J Pharmacol 120: 1568-1574, 1997.

22. Han J., Kim N., Joo H., Kim E., and Earm Y.E. ATP-sensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol 283: H1545-H1554, 2002.

23. Ahern G.P., Hsu S-F., and Jackson M.B. Direct actions of nitric oxide on rat neurohypophysial K+ channels. Journal of Physiology. 520.1: 165-176, 1999.

24. Banci L, Bertini I, Del Conte R, Markey J, Ruiz-Duen˜ as FJ. Copper trafficking: The solution structure of Bacillus subtilis CopZ. Biochemistry. 40:15660–15668, 2001.

25. Wernimont AK, Huffman DL, LambAL, O'Halloran TV, Rosenzweig AC. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol. 7:766–771, 2000.

26. Prohaska J.R. and Gybina A.A. Intracellular copper transport in mammals. Journal of Nutrition. 134: 1003-1006, 2004.

27. Zhang D.X., Chen Y.F., Campbell W.B., Zou A.P., Gross G.J., and Li P.L. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res. 89: 1177-1183, 2001.

28. Lebuffe G., Schumacker P.T., Shao Z.-H., Anderson T., Iwase H., and Vanden Hoek T.L. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 284: H299- H308, 2003.

29. Matoba T., Shimokawa H., Morikawa K., Kubota H., Kunihiro I., Urakami-Harasawa I., Mukai Y., Hirakawa Y., Akaike T., and Takeshita A. Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol. 23: 1224-1230, 2003.

30. Yada T., Shimokawa H., Hiramatsu O., Kajita T., Shigeto F., Goto M., Ogasawara Y., Kajiya F. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation. 107: 1040-1045, 2003.

31. Gao Y. J., Hirota S., Zhang D.W., Janssen L.J., Lee R.M. Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Br J Pharmacol 138: 1085-1092, 2003.

32. Rogers P.A., Chilian W.M., Bratz I.N., Bryan R.M. Jr., Dick G.M. H2O2 activates redox- and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292: H1404-H1411, 2007.

33. Xu Z., Ji X., Boysen P.G. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol Heart Circ Physiol 286: H1433-H1440, 2004.

34. Duprat E., Girard C., Jarretou G., Lazdunski M. Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J Physiol 562. 1: 235-244, 2005.

35. Lin Y.F., Raab-Graham K., Jan Y.N., Jan L.Y. NO stimulation of ATP-sensitive potassium channels: involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection. PNAS 101(no.20): 7799-7804, 2004.

36. Han J., Kim N., Kim E., Ho W.K., and Earm Y.E. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. Journal of Biological Chemistry Vol. 276, No. 25, Issue of June 22, pp. 22140-22147, 2001.

37. Almansa A., Navarrete F., Vega R., and Soto E. Modulation of voltage-gated Ca2+ current in vestibular hair cells by nitric oxide. J Neurophysiol 97: 1188-1195, 2007.

38. Blatter L.A., Wier W.G. Nitric oxide decreases [Ca2+]i in vascular smooth muscle by inhibition of the calcium current. Cell Calcium 15: 122-131, 1994.

39. Yoshimura N., Seki S., de Groat W.C. Nitric oxide modulates Ca2+ channels in dorsal root ganglion neurons innervating rat urinary bladder. J Neurophysiol 86: 304-311, 2001.

40. D`Ascenzo M., Martinotti G., Azzena G.B., Grassi C. cGMP/protein kinase G-dependent ingibition of N-type Ca2+ channels induced by nitric oxide in human neuroblastoma IMR32 cells. J Neurosci 22: 7485-7492, 2002.

41. Carabelli V., D`Ascenzo M., Carbone E., Grassi C. Nitric oxide inhibits neuroendocrine CaνI L-channel gating via cGMP-dependent protein kinase in cell attached patches of bovine chromaffin cells. J Physiol 541: 351-366, 2002.

42. Bauser-Heaton H.D., Song J., Bohlen H.G. Cerebral microvascular nNOS responds to lowered oxygen tension through a bumetanide-sensitive cotransporter and sodium-calcium exchanger. Am J Physiol Heart Circ Physiol 294: H2166-H2173, 2008.


About this article

Authors: Petuhov V.I., Shchukov A.N.

Year: 2015


Editor-in-chief
Sergey Aleksandrovich
MIROSHNIKOV

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
© Электронное периодическое издание: ВЕСТНИК ОГУ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
Зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций
Свидетельство о регистрации СМИ: Эл № ФС77-37678 от 29 сентября 2009 г.
Учредитель: Оренбургский государственный университет (ОГУ)
Главный редактор: С.А. Мирошников
Адрес редакции: 460018, г. Оренбург, проспект Победы, д. 13, к. 2335
Тел./факс: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 © CIT OSU