Вестник On-line
Оренбургский государственный университет 05 ноября 2024   RU/EN
Рубрики Вестника
Педагогика
Психология
Другие

Поиск
Vak
Антиплагиат
Orcid
Viniti
ЭБС Лань
Rsl
Лицензия Creative Commons

Июнь 2015, № 6 (181)



УДК: 616-008.9:621.039-058.66Петухов В.И., Щуков А.Н. ОБ ОПРАВДАННОСТИ ЭКСТРАПОЛЯЦИЙ ДАННЫХ ЭЛЕМЕНТНОГО АНАЛИЗА ВОЛОС ЧЕЛОВЕКА НА ВЕСЬ ОРГАНИЗМВ последние годы для определения элементного статуса человека приобрел популярность метод количественной спектрометрии такого биосубстрата, как волосы. В появившихся публикациях на эту тему элементный состав волос нередко выступает как некий интегральный показатель обеспеченности минералами всего организма, что выглядит спорным и требует специального обсуждения. Одна из попыток такого обсуждения представлена в данной статье. По данным атомно-эмиссионной спектрометрии концентрационные значения содержащихся в волосах химических элементов (не только металлов) имеют выраженный индивидуальный разброс. Уже сам этот факт наводит на мысль, что причиной наблюдаемых сдвигов может быть отнюдь не гипо- или гиперэлементоз, а перераспределение химических элементов с участием внутри- и внеклеточных регуляторов трансмембранного трафика минералов, практически не влияющего на элементный состав организма в целом. Существует множество факторов, которые могут рассматриваться в качестве наиболее вероятных причин, вызывающих количественные сдвиги в металлолигандном гомеостазе (МЛГ). Их отличительная черта  — способность активировать или деактивировать (вплоть до полной блокады) ионные каналы  — водные поры трансмембранных белков, ведающих трафиком металлов. Активация лиганд-активируемых каналов может происходить за счет редокс-модификации тиоловых групп цистеина в молекуле белков-транспортеров активными формами кислорода (АФК) и азота (АФА), продукция которых заметно возрастает в условиях окислительного/нитрозативного стресса. Нельзя исключить, что окислительный/нитрозативный стресс способен приводить к активации ATPаз P-типа. Поэтому мы вправе ожидать в эпидермальных клетках количественные сдвиги внутриклеточных концентраций не только электрогенных (K, Na, Ca), но и других металлов (Cd, Zn, Pb, Cu, Co, Ag), трафик которых через наружную мембрану осуществляет P1B-type-помпа из суперсемейства ATPаз (P-type). Волосы можно использовать в качестве биосубстрата для количественной оценки МЛГ, но следует сказать, что проблема не в субстрате, а в трактовке результатов спектрометрии при анализе МЛГ эпидермальных клеток.Ключевые слова: металлолигандный гомеостаз, эпидермис, редокс-статус.

Загрузить
Список использованной литературы:

1. Петухов В.И., Дмитриев Е.В., Шкестерс А.П., Скальный А.В. Проблемы интегральной оценки элементного статуса человека по данным спектрометрии волос. Микроэлементы в медицине. № 7, С.7-14, 2006.

2. Petukhov V.I., Baumane L., Dmitriev Е.V., Vanin A.F. Nitric oxide and electrogenic metals (Ca, Na, K) in epidermal cells. Biochemistry (Moscow) Supplement Series B Biomedical Chemistry. V. 8, No 4, pp. 343-348, 2014.

3. Nilius B. and Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev 81: 1415–1459, 2001.

4. Marchenko S.M. and Sage SO. Smooth muscle cells affect endothelial membrane potential in rat aorta. Am J Physiol Heart Circ Physiol 267: H804–H811, 1994.

5. Aalkjaer C. and Nilsson H. Vasomotion: cellular background for the oscillator and for the synchronization of smooth muscle cells. Br J Pharmacol 144: 605–616, 2005.

6. Mauban J.R. and Wier W.G. Essential role of EDHF in the initiation and maintenance of adrenergic vasomotion in rat mesenteric arteries. Am J Physiol Heart Circ Physiol 287:H608–H616, 2004.

7. Okazaki K., Seki S., Kanaya N., Hattori J., Tohse N., and Namiki A. Role of endothelium-derived hyperpolarizing factor in phenylephrine-induced oscillatory vasomotion in rat small mesenteric artery. Anesthesiology 98:1164–1171, 2003.

8. Haddock R.E., Hirst G.D., and Hill C.E. Voltage independence of vasomotion in isolated irideal arterioles of the rat. J Physiol 540: 219–229, 2002.

9. Lamboley M., Schuster A., Beґny J.L., and Meister J.J. Recruitment of smooth muscle cells and arterial vasomotion. Am J Physiol Heart Circ Physiol 285: H562–H569, 2003.

10. Koenigsberger M., Sauser R., Beґny J.L., and Meister J.J. Effects of arterial wall stress on vasomotion. Biophys J 91: 1663–1674, 2006.

11. Koenigsberger M., Sauser R., Beґny J.L., and Meister J.J. Role of the endothelium on arterial vasomotion. Biophys J 88: 3845–3854, 2005.

12. Koenigsberger M., Sauser R., Lamboley M., Beґny J.L, and Meister J.J. Ca2+ dynamics in a population of smooth muscle cells: modeling the recruitment and synchronization. Biophys J. 87: 92–104, 2004.

13. Axelsen, K.B., Palmgren, M.G. J. Mol. Evol. 46: 84-101, 1998.

14. Argьello, J.M. J. Membrane Biol. 195: 93-108, 2003.

15. Argьello, J.M., Eren, E. Biometals. 20: 233-248, 2007.

16. Yano, M. Circ.J. 72: 509-514, 2008.

17. Sun, J., Yamaguchi, N., Xu, L., Eu, J.P., Stamler, J.S., and Meissner, G. Biochemistry. 47: 13985-13990, 2008.

18. Yan, Y., Liu, J., Weil, C., Li, K., Xie, W., Wang, Y., and Cheng, H. Cardiovasc. Res. 77: 432-441, 2008.

19. Gyorke, S., and Terentyev, D. Cardiovasc. Res. 77, 245-255, 2008.

20. Southam E., and Garthwaite J. Comparative effects of some nitric oxide donors on cyclic GMP levels in rat cerebellar slices. Neurosci Lett 130: 107-111, 1991.

21. Shinbo A., and Iijima T. Potentiation by nitric oxide of the ATP-sensitive K+ current induced by K+ channel openers in guinea-pig ventricular cells. Br J Pharmacol 120: 1568-1574, 1997.

22. Han J., Kim N., Joo H., Kim E., and Earm Y.E. ATP-sensitive K+ channel activation by nitric oxide and protein kinase G in rabbit ventricular myocytes. Am J Physiol 283: H1545-H1554, 2002.

23. Ahern G.P., Hsu S-F., and Jackson M.B. Direct actions of nitric oxide on rat neurohypophysial K+ channels. Journal of Physiology. 520.1: 165-176, 1999.

24. Banci L, Bertini I, Del Conte R, Markey J, Ruiz-Duen˜ as FJ. Copper trafficking: The solution structure of Bacillus subtilis CopZ. Biochemistry. 40:15660–15668, 2001.

25. Wernimont AK, Huffman DL, LambAL, O'Halloran TV, Rosenzweig AC. Structural basis for copper transfer by the metallochaperone for the Menkes/Wilson disease proteins. Nat Struct Biol. 7:766–771, 2000.

26. Prohaska J.R. and Gybina A.A. Intracellular copper transport in mammals. Journal of Nutrition. 134: 1003-1006, 2004.

27. Zhang D.X., Chen Y.F., Campbell W.B., Zou A.P., Gross G.J., and Li P.L. Characteristics and superoxide-induced activation of reconstituted myocardial mitochondrial ATP-sensitive potassium channels. Circ Res. 89: 1177-1183, 2001.

28. Lebuffe G., Schumacker P.T., Shao Z.-H., Anderson T., Iwase H., and Vanden Hoek T.L. ROS and NO trigger early preconditioning: relationship to mitochondrial KATP channel. Am J Physiol Heart Circ Physiol. 284: H299 — H308, 2003.

29. Matoba T., Shimokawa H., Morikawa K., Kubota H., Kunihiro I., Urakami-Harasawa I., Mukai Y., Hirakawa Y., Akaike T., and Takeshita A. Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol. 23: 1224-1230, 2003.

30. Yada T., Shimokawa H., Hiramatsu O., Kajita T., Shigeto F., Goto M., Ogasawara Y., Kajiya F. Hydrogen peroxide, an endogenous endothelium-derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation. 107: 1040-1045, 2003.

31. Gao Y. J., Hirota S., Zhang D.W., Janssen L.J., Lee R.M. Mechanisms of hydrogen-peroxide-induced biphasic response in rat mesenteric artery. Br J Pharmacol 138: 1085-1092, 2003.

32. Rogers P.A., Chilian W.M., Bratz I.N., Bryan R.M. Jr., Dick G.M. H2O2 activates redox — and 4-aminopyridine-sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292: H1404-H1411, 2007.

33. Xu Z., Ji X., Boysen P.G. Exogenous nitric oxide generates ROS and induces cardioprotection: involvement of PKG, mitochondrial KATP channels, and ERK. Am J Physiol Heart Circ Physiol 286: H1433-H1440, 2004.

34. Duprat E., Girard C., Jarretou G., Lazdunski M. Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. J Physiol 562. 1: 235-244, 2005.

35. Lin Y.F., Raab-Graham K., Jan Y.N., Jan L.Y. NO stimulation of ATP-sensitive potassium channels: involvement of Ras/mitogen-activated protein kinase pathway and contribution to neuroprotection. PNAS 101(no.20): 7799-7804, 2004.

36. Han J., Kim N., Kim E., Ho W.K., and Earm Y.E. Modulation of ATP-sensitive potassium channels by cGMP-dependent protein kinase in rabbit ventricular myocytes. Journal of Biological Chemistry Vol. 276, No. 25, Issue of June 22, pp. 22140-22147, 2001.

37. Almansa A., Navarrete F., Vega R., and Soto E. Modulation of voltage-gated Ca2+ current in vestibular hair cells by nitric oxide. J Neurophysiol 97: 1188-1195, 2007.

38. Blatter L.A., Wier W.G. Nitric oxide decreases [Ca2+]i in vascular smooth muscle by inhibition of the calcium current. Cell Calcium 15: 122-131, 1994.

39. Yoshimura N., Seki S., de Groat W.C. Nitric oxide modulates Ca2+ channels in dorsal root ganglion neurons innervating rat urinary bladder. J Neurophysiol 86: 304-311, 2001.

40. D`Ascenzo M., Martinotti G., Azzena G.B., Grassi C. cGMP/protein kinase G-dependent ingibition of N-type Ca2+ channels induced by nitric oxide in human neuroblastoma IMR32 cells. J Neurosci 22: 7485-7492, 2002.

41. Carabelli V., D`Ascenzo M., Carbone E., Grassi C. Nitric oxide inhibits neuroendocrine CaνI L-channel gating via cGMP-dependent protein kinase in cell attached patches of bovine chromaffin cells. J Physiol 541: 351-366, 2002.

42. Bauser-Heaton H.D., Song J., Bohlen H.G. Cerebral microvascular nNOS responds to lowered oxygen tension through a bumetanide-sensitive cotransporter and sodium-calcium exchanger. Am J Physiol Heart Circ Physiol 294: H2166-H2173, 2008.


О статье

Авторы: Петухов В.И., Щуков А.Н.

Год: 2015


Главный редактор
Сергей Александрович
МИРОШНИКОВ

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
© Электронное периодическое издание: ВЕСТНИК ОГУ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
Зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций
Свидетельство о регистрации СМИ: Эл № ФС77-37678 от 29 сентября 2009 г.
Учредитель: Оренбургский государственный университет (ОГУ)
Главный редактор: С.А. Мирошников
Адрес редакции: 460018, г. Оренбург, проспект Победы, д. 13, к. 2335
Тел./факс: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 © ЦИТ ОГУ