Kazakova O.N., Pikhtilkova O.A., Pikhtilkov S.A. ABOUT ONE IMPLEMENTATION OF TORUS CRYPTOGRAPHYThe most popular cryptosystems with public key are: RSA codes, shifrosistem El-Gamalya, Mac-Ellis's shifrosistema and elliptic cryptography. Now the elliptic cryptography is considered as the most successful system providing good cryptofirmness in case of smaller key length. Recently there were works on torichesky cryptography where the new shifrosistem of CEILIDH based on algebraic Torahs is offered. Key words: algebraic group, algebraic torus, torus cryptography.
References:
1. Alferov A.P., Teeth A.Yu., Kuzmin A.S., Cheremushkin A.V. Fundamentals of cryptography. Manual. 2nd prod. corrected and added. — M.: Helios ARV, 2002. 480 pp.
2. Bolotov A.A., Gashkov S.B., Frolov A.B., Chasovskikh A.A. Elementary introduction to elliptic cryptography: Algebraic and algorithmic bases. — M.: Komkniga, 2006. 328 pp.
3. Bolotov A.A., Gashkov S.B., Frolov A.B. Elementary introduction to elliptic cryptography: Protocols of cryptography on elliptic curves. — M.: Komkniga, 2006. 280 pp.
4. Rubin K., Silverberg A. Torus-based cryptography // Advances of Cryptology. — 2003. — P. 349-365.
5. Voskresenskiy V.E. Algebraic torus. — Moskow: Nauka, 1977. 223 pp.
6. Voskresenskiy V.E. Birational geometry of linear algebraic groups. — M.: MCNMO, 2009. 404 pp.
7. Krutikov Yu.Yu., Popov S.Yu. Cohomology birational invariants of four-dimensional algebraic torus // Vestnik SamGU — natural-science series. — 2011. — № 2. — P. 26-37.
8. Grekhov M.V. Model Nerona of two-dimensional anisotropic algebraic toruses over local fields // Vestnik SAMGU — a natural-science series. — 2012. — № 9. — Page 31-40.
9. Iskovskikh V.A., Kulikov V.S., Prokhorov Yu.G., Chel'tsov I.A. Algebraic surfaces: geometry and arithmetics. — M.: MCNMO, 2012. 356 pp.
10. Itogi of science and techniques / Dews. Akad. sciences, Vsesoyuz. in-t nauch. and tech. inform. — M.: VINITI, 2001. — (The modern mathematics and its application / under the editorship of R.V. Gamkrelidze). Vol. 70: Algebraic geometry. — 2001. — 264 pages.
11. Itogi of science and techniques / Dews. Akkad. sciences, VINITI. — M.: VINITI, 2002 (The modern mathematics and its applications / editions of R. V. Gamkrelidze). Vol. 100: Algebraic geometry. — 2006. — 248 pages.
12. Coke D., Littl Dzh., O' Shi D. Ideals, variaties and algorithms. Introduction to computing aspects of algebraic geometry and commutative algebra. — M.: World, 2000. 687 pp.
13. Harris D. Algebraicheskaya geometry. — M.: MCNMO, 2005. — 400 pp.
14. Hartskhorn R. Algebraicheskaya geometry. — Novokuznetsk: Publishing house of NFMI, 2000. — Vol. 1. 368 pp.
15. Shafarevich I.R. Fundamentals of algebraic geometry. — M.: MCNMO, 2007. 589 pp.
About this article
Authors: Pihtilkov S.A., Pihtilkova O.A., Kazakova O.N.
Year: 2015
|