Vestnik On-line
Orenburg State University may 01, 2024   RU/EN
Headings of Vestnik
Pedagogics
Psychology
Other

Search
Vak
Антиплагиат
Orcid
Viniti
ЭБС Лань
Rsl
Лицензия Creative Commons

2012, № 4 (140)



Shelamova S.А., Tyrsin Y.А. THE ROLE OF CARBOXYL GROUPS IN THE ACTIVITY OF LIPASE I RHIZOPUS ORYZAE 1403 Participation of carboxyl groups in catalytic action Lipase I Rhizopus oryzae 1403 is proved inactivated carbodiimide (EDC) at presence nucleophile — glycine ethyl ester. The amino acid analysis modified enzyme has excluded an opportunity reacted with EDC tyrosine and histidine, and absence of restoration of activity hydrocxylamine — with serine. At practically complete loss of activity enzyme was modified 11 carboxyl groups; under condition of the pseudo-first order of reaction hydrolysis — three. Research of kinetic hydrolysis triolein and tributirin have shown, that Vmax differed on both a little substrates, and KM on tributirin has increased in 1,47, and on triolein — in 1,18 times. It results in a conclusion, that of carboxyl group answer for creation active conformation enzyme at linkage with certain substrate.Key words: lipase, Rhizopus, carboxyl group.

Download
References:

1. Benjamin S., Pandey A. Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation // Braz. Arch. Biol. a Technol. — 2001. — V. 44, №2. — P. 213–221.

2. Brumlik M. J., Buckley J. T. Identification of the catalytic triad of the lipase/acyltransferase from Aeromonas hydrophila // J. Bacteriology. — 1996. — V. 178, №7. — P. 2060–2064.

3. Van Pouderoyen G., Eggert T., Jaeger K-E., Dijkstra B. W. The crystal structure of Bacillus subtilis lipase: A minimal б/в-hydrolase fold enzyme // J. Mol. Biol. — 2001. — V. 309, №1. — P. 215–226.

4. Yadav R. P., Rajendra К. S., Gupta R., Davidson W. S. Purification and characterization of a regiospecific lipase from Aspergillus terreus // Biotechnol. Appl. Biochem. — 1998. –V. 28, №3. — P. 243–249.

5. Brady L., Brzozowski A. M., Derewenda Z. S., Dodson E. J., Dodson G. G., Tolley S.,Turkenburg J. P., Christiansen L., Huge-Jensen B., Norskov L., Thim L., Menge U. A serine protease triad forms the catalytic centre of a triacylglycerol lipase // Nature. — 1990. — V. 343. — P. 767–770.

6. Derewenda U., Swenson L., Green R., Wei Y., Yamaguchi S., Joerger R., Haas M. J., Derewenda Z. S. Current progress in crystallographic studies of new lipases from filamentous fungi // Protein Engineering. — 1994. — V. 7, №4. — P. 551-557.

7. Boel E., Huge-Jensen B., Christiansen M., Thim L., Fiil N. P. Rhizomucor miehei trigly-ceride lipase is synthesized as a precursor // Lipids. — 1988. — V. 23. — P. 701–706.

8. Derewenda Z. S., Derewenda U., Dodson G. G. The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1,9-Е resolution // J. Mol. Biol. — 1992. — V. 227. — P. 818–839.

9. Blow D. M. Birktoft, J. J., Hartlet B. S. Role of a buried acid group in the mechanism of action of chymotrypsin // Nature. — 1969. — V. 221. — P. 337-340.

10. Bachovchin W. W., Roberts J. D. Nilrogen-15 nuclear magnetic resonance spectroscopy. The state of hixtidine in the catalytic triad of б-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteases // J. Am. Chem. Soc. — 1978. — V. 100. — P. 8041-8047.

11. Bachovchin W. W., Kaiser R., Richards J. H., Roberts J. D. Catalytic mechanism of serine protease: reexamination of the pH dependence of the histidyl 1J13 C-H coupling constant in the catalytic triad of б-lytic protease // Proc. Natl. Acad. Sci. USA. — 1981. — V. 78. — P. 7323-7326.

12. Warshel A., Naray-Szabo G., Sussman F., Hwang J.-K. How do serine proteases really work? // Biochemistry. — 1989. — V. 28. — P. 3629–3637.

13. Warshel A. Computer modeling of chemical reactions in enzymes and solution. — New York: John Wiley and Sons, 1991.

14. Lightstone F. C., Zheng Y.-L., Bruice T. C. Molecular dynamics simulations of ground and transition states for the SN2 displacement of C1– from 1,2-dichloroethane at the active site of Xanthobacter autoirophicus haloalkane dehalogenase // J. Am. Chem. Soc. — 1998. — V. 120. — P. 5611-5621.

15. Frey P. A. A, Whitt S. A., Tobin J. B. Low-barrier hydrogen bond in the catalytic triad of serine proteases // Science. — 1994. — V. 264. — P. 1927-1930.

16. Cleland W. W., Kreevoy M. M. Low-barrier hydrogen bonds and enzymatic catalysis // Science. — 1994. — V. 264. — P. 1887-1890.

17. Warshel A., Papazyan A. Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds // Proc. Natl. Acad. Sci. USA. — 1996. — V. 93. — P. 13665–13670.

18. Warshel A., Florian J. Computer simulations of enzyme catalysis: finding out what has been optimized by nature // Proc. Natl. Acad. Sci. USA. — 1998. — V. 95. — P. 5950-5955.

19. Warshel A. Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites // J. Biol. Chem. — 1998. — V. 273. — P. 27035-27038.

20. Yamada K., Machida H. // Nippon Nфgeikagaku Kaishi (in Japanese). — 1992. — V. 36. — P. 858–860.

21. Petrova L. L., Каzаnina G. А., Selezneva А. А. The use of pH-handsome method for the study of the enzymatic action of lipase Penicillium sp. // Applied biochemistry and microbiology. — 1977. — V. 13, №5. — P. 758.

22. Varfolomeev S. D., Gurevichs К. G. Biokinetic: a Practical course. — M.: FAIR-PRESS, 1999. — 720 p.

22. Dufour C., Semeriva M., Desnuelle P. The role of carboxyl groups in the activity of pancreatic lipase // Biochim. Biophys. Acta. — 1973. — V. 327. — P. 101–113.

24. Kцller W., Kolattukudy P. E. Mechanism of action of cutinase: chemical modification of the catalytic triad characteristic for serine hydrolases // Biochemistry. — 1982. — V. 21. — P. 3083–3090.

25. Lombardo D. Catalytic properties of modified human pancreatic carboxylic-ester hydrolase // Biochim. Biophys. Acta. — 1982. — V. 700. P. 75–80.

26. Lau E. Y., Bruice T. C. Consequences of breaking the Asp-His hydrogen bond of the catalytic triad: effects on the structure and dynamics of the serine esterase cutinase // Biophysical Journal. — 1999. — V. 77. — P. 85–98.

27. Herrgard S., Gibas C. J., Subramaniam S. Role of an electrostatic network of residues in the enzymatic action of the Rhizomucor miehei lipase family // Biochemistry. — 2000. — V. 39, №11. — P. 2921–2930.

28. Chang R.-C., Chen J. C., Shaw J.-F. Studying the active site pocket of Staphylococcus hyicus lipase by site-directed mutagenesis // Biochem. Biophys. Res. Commun. — 1996. — V. 229, №1. — P. 6–10.

29. Brumlik M. J., Buckley J. T. Identification of the catalytic triad of the lipase/acyl-transferase from Aeromonas hydrophila // J. Bacteriology. — 1996. — V. 178, №7. — P. 2060–2064.

30. Jдger S., Demleither G., Gцtz F. Lipase of Staphilococcus hyicus: analysis of the catalytic triad by site-directed mutagenesis // FEMS Microbiol. Lett. — 1992. — V. 100. — P. 249–254.


About this article

Authors: Shelamova S.A., Tyrsin Yu.A.

Year: 2012


Editor-in-chief
Sergey Aleksandrovich
MIROSHNIKOV

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
© Электронное периодическое издание: ВЕСТНИК ОГУ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
Зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций
Свидетельство о регистрации СМИ: Эл № ФС77-37678 от 29 сентября 2009 г.
Учредитель: Оренбургский государственный университет (ОГУ)
Главный редактор: С.А. Мирошников
Адрес редакции: 460018, г. Оренбург, проспект Победы, д. 13, к. 2335
Тел./факс: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 © CIT OSU