Vestnik On-line
Orenburg State University november 20, 2024   RU/EN
Headings of Vestnik
Pedagogics
Psychology
Other

Search
Vak
Антиплагиат
Orcid
Viniti
ЭБС Лань
Rsl
Лицензия Creative Commons

September 2015, № 9 (184)



Kobzev G.I., Schepin A.S., Peshkov S.A. STRUCTURAL AND SPECTRAL PROPERTIES OF THE COMPLEX VALINE IN NEUTRAL AND IONIC FORM WITH CATIONS ZN2+, CD2+ (QUANTUM CHEMICAL STUDY)Heavy metals are involved in the diverse chemical, physico-chemical and biological processes. They can act as toxicants, i. e. substances, which are large concentrations can lead to disorders or disorders of various vital processes of the body. Studying the mechanisms of accumulation and excretion of heavy metals in living cells must be based on a study of the problems with the metal binding amino acids as a component of proteins. Given that the ability of metal ions to interact with the amino acids depends on the presence in their structure of certain atoms and functional groups, this reaction is characterized by the formation of metal complexes of varying strength. Density functional method (DFT), in the framework of self-consistent field (SCF) approximation B3LYP/DZP and taking into account the amendments to the energy perturbation theory MP2 (Moller-Plesset) calculated the geometric parameters of the equilibrium states of complex valine in the neutral and ionic forms cations zinc (II) and cadmium (II) in the gas phase. The influence conformation valine complexes with metals, zinc (II) and cadmium (II), as well as the ionic and neutral forms on their stability. The energies of bond dissociation Val-Me, Me = Zn2+, Cd2+. A number of valine stability of complexes with cations of zinc and cadmium. For cationic complexes with the anionic form of valine [Val-Me2+]1+ calculated IR spectra revealed that changes the fundamental stretching and deformation vibration frequencies. The regularities of the fringe shift in the IR spectra of the complexes [Val-Zn2+]1+, [Val-Cd2+]1+ in complex combination oscillations.Key words: structure and stability of the complexes, complexes valine with metal cations, IR spectra, quantum-chemical modeling.

Download
References:

1. Klomp A.E.M., Juijn J.A., L. van der Gun T.M., van der Berg I.E.T., Berger R. The terminus of the human copper transporter 1 (hCTR 1) is localized exstracelulary, and interact with itself // Biochem. J., 2003, № 370, P. 881–889.

2. Navratil T., Sestakova I., Marecek V. Transport of heavy metals across the supported phospholipid bilayers// Internat.J.En.Envir.2011, V. 5, № 3, P. 337 — 347.

3. Foulkes E.C. Transport of toxic heavy metals across cell membranes // Proc. Soc. Exp. Biol. Med. — 2000, V. 223, № 3, P.234–240.

4. Peshkov S.А., Sizenchov А.N. The bioaccumulation of heavy metals by microorganisms is part of probiotics under invitro / Vestnik OSU, 2013, № . 10, P. 142-144.

5. Fetisova А. V., Illarionov S. А. Transportation of the metal ions across the cytoplasmic membrane / Vestnik Perm. Univer., 2012, V. 1, P. 86-91.

6. Gutknecht J. Inorganic Mercury (Hg2+) Transport through Lipid Bilayer Membranes // J. Membrane Biol., 1981, № 61, P. 61–66.

7. Kobzev G.I. Spin effects in enzymatic oxidation reactions of substrates with oxygen // Vestnik OSU, 2005, № . 9, P. 141-150.

8. Kobzev G.I. The mechanisms of activation of molecular oxygen in the enzymatic redox reactions // Vestnik OSU, 2005, № . 10, P. 48-55.

9. Mandal S., Das G., Askari H. Physicochemical investigations of the metal complexes of L-valine with doubly charged ions of nickel, copper and zinc: a combined experimental and computational approach / RSC Adv., 2014, № 4, P 24796–24809.

10. Mandal S., Das G., Askari H. Experimental and Quantum Chemical Modeling Studies of the Interactions of L Phenylalanine with Divalent Transition Metal Cations / J. Chem. Inf. Model., 2014, V. 54, № 9, P. 2524–2535.

11. Mandal S., Das G., Askari H. A combined experimental and quantum mechanical investigation on some selected metal complexes of L-serine with first row transition metal cations / J. Mol. Struct., 2015, V. 1081, P. 281–292.

12. Suarez D., Diaz N., Lopez R. A Combined Semiempirical and DFT Computational Protocol for Studying Bioorganometallic Complexes: Application to Molybdocene–Cysteine Complexes / J. Comp. Chem., 2014, № 35, P. 324–334.

13. Yang G., Zhu R., Zhoub L., Liua C. Interactions of Zn(II) with single and multiple amino acids. Insights from density functional and ab initio calculations / J. Mass Spectrom., 2012, № 47, P. 1372–1383.

14. Rulsek L., Havlas Z. Theoretical studies of metal ion selectivity. 1. DFT calculations of interaction energies of amino acid side chains with selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) / J. Am. Chem. Soc., 2000, № 122, P. 10428–10439.

15. Remko M., Fitz D., Rode M. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of L-histidine and zwitterionic L-histidine / J. Amino Acids, 2010, № 39, P.1309–1319.

16. Remko M., Fitz D., Rode M. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water coordination on the structure and properties of L-Arginine and zwitterionic L-Arginine / J. Phys. Chem. A, 2008, № 112, P. 7652–7661.

17. Marino T., Toscano M., Russo N., Grand A. Structural and Electronic Characterization of the Complexes Obtained by the Interaction between Bare and Hydrated First-Row Transition-Metal Ions (Mn2+, Fe2+, Co2+, Ni2+,Cu2+, Zn2+) and Glycine / J. Phys. Chem. B, 2006, № 110, P. 24666–24673.

18. Schepin A.S. Quantum-chemical study of the complexation of valine with metals Co, Zn, Cd, Pb // Quantum chemical calculations: The structure and reactivity of organic and inorganic molecules, Ivanovo ISUCT, 2015. P. 381-386.

19. Belcastro M., Marino T., Russo N., Toscano M. Interaction of cysteine with Cu2+ and Group IIb (Zn2+, Cd2+, Hg2+) metal cations: a theoretical study // J. Mass Spectrom. 2005. № 40. P. 300–306.

20. Marino T., Russo N., Toscano M. Gas-phase metal ion (Li+, Na+, Cu2+) affinities of glycine and alanine // J. of Inorg. Biochem. 2000. № 79. P. 179–185.

21. Hohenberg P., Kohn W. Inhomogeneous electron gas // Phys. Rev. B. 1964. V. 136. P. 864–871.

22. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects // Phys. Rev. A. 1965. V. 140. P. 1133–1138.

23. Neto C.A., Jorge F.E. All-electron double zeta basis sets for the most fifth-row atoms: Application in DFT spectroscopic constant calculations // Chemical Physics Letters. 2013. V. 582. P. 158–162.

24. Mudar A.A. SiGe superlattice nanocrystal infrared and Raman spectra: A density functional theory study // J. App. Phys. 2012. V. 111. P. 044306-044306–4.

25. Grimme S. Improved second-order Moller–Plesset perturbation theory by separate scaling of parallel — and antiparallel-spin pair correlation energies // J. Chem. Phys. 2003. V. 118. P. 9095–9102.

26. Andrade S.G., Luisa C., Goncalves S., Jorge F.E. Scaling factors for fundamental vibrational frequencies and zero-point energies obtained from HF, MP2, and DFT/DZP and TZP harmonic frequencies // J. of Mol. Struct. Theochem. 2008. V. 864, № 3. P. 20–25.

27. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M., Montgomery J.A. General Atomic and Molecular Electronic Structure System // J. Comput. Chem. 1993. V. 14, № 11. P. 1347–1363.

28. Zaika J.V., Kobzev G.I., Davidov K.S., Kazaeva A.N., Urvaev D.G. Features of the electronic spectrum of hydronium ion and small clusters 1(H3O+–nH2O), n = 1–3, 5, 6 // Chem. Phys. 2015. V. 34, № 3. P. 1–10.

29. Zaika J.V., Kobzev G.I. Features of formation of hydronium ion and small clusters // J. of General Chem. 2015. V. 85, № 5. P. 705-719.

30. Stepanian S.G., Reva I.D., Radchenko E.D., Adamowicz L. Combined Matrix-Isolation Infrared and Theoretical DFT and ab Initio Study of the Nonionized Valine Conformers // J. Phys. Chem. A. 1999. № 103. P. 4404–4412.


About this article

Authors: Shchepin A.S., Kobzev G.I., Peshkov S.A.

Year: 2015


Editor-in-chief
Sergey Aleksandrovich
MIROSHNIKOV

Crossref
Cyberleninka
Doi
Europeanlibrary
Googleacademy
scienceindex
worldcat
© Электронное периодическое издание: ВЕСТНИК ОГУ on-line (VESTNIK OSU on-line), ISSN on-line 1814-6465
Зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций
Свидетельство о регистрации СМИ: Эл № ФС77-37678 от 29 сентября 2009 г.
Учредитель: Оренбургский государственный университет (ОГУ)
Главный редактор: С.А. Мирошников
Адрес редакции: 460018, г. Оренбург, проспект Победы, д. 13, к. 2335
Тел./факс: (3532)37-27-78 E-mail: vestnik@mail.osu.ru
1999–2024 © CIT OSU