|
|
|
Davydova О.К., Аleshina Е.S., Zhilenkov А.V. USE OF THE LUMINESCING STRAINS OF MICROORGANISMS AT RESEARCH OF FULLERENES DERIVATIVES BIOLOGICAL ACTIVITY DEPENDENCE ON THEIR SURFACE CHARGE VALUE [№ 10 ' 2015] Production of nanomaterials and their successful application in various spheres causes concern about their uncontrollable receipt in environment and, as a result, impacts on live organisms that raise a question of development of the express analysis of danger/safety of nanomaterials with use original sensory and the reporter test-systems on the basis of luminescent and non-luminescent microorganisms. In the presented work the biological (antimicrobial) activity of С60- and С70-fullerene derivatives is estimated and the mechanisms which are its cornerstone and determined by formation of physical contact with bacterial cell targets are discussed. The method of the bioluminescent analysis was used for determination of concentration of 12 originally synthesized С60- and С70-fullerene derivatives, causing suppression of bioluminescence by 60th minute of contact for 50 % of control values (EC50). It is shown that use of a sensory strain of Escherichia coli K12 TG1 allows to reveal antibacterial activity of a greater number of functionalized fullerene derivatives (at 6 of 12) and the level of sensitivity, than when using Bacillus subtilis B-10548 (at 3 of 12). Application of the modified gel electrophoresis method allowed to estimate the value and the size of electrophoretic mobility of the used С60- and С70-fullerene derivatives and a role of electrostatic interactions in their biological activity. On the basis of the received experimental results it can be concluded that the obtained data can be used for creation of the innovative nanodisinfectants, are of interest to practical use in medicine and veterinary science. |
|
Editor-in-chief |
Sergey Aleksandrovich MIROSHNIKOV |
|
|