Скворцова Т.А.

Оренбургский государственный университет, г. Оренбург, Россия E-mail: atanya-92@mail.ru

СОДЕРЖАНИЕ ТЯЖЁЛЫХ МЕТАЛЛОВ В ПЛОДАХ ROSA MAJALIS HERRM., ПРОИЗРАСТАЮЩЕГО В ПАРКОВЫХ ЗОНАХ ГОРОДА ОРЕНБУРГА

Среди веществ, загрязняющих урбанизированные территории особую роль играют тяжёлые металлы, так как попадая при определённых условиях в организм человека, они могут накапливаться, нарушая физиологические процессы в организме. Накопление тяжелых металлов в окружающей среде является серьезной проблемой во всем мире из-за невозможности биологического разложения и их аккумулятивного поведения. В современных условиях термин тяжелых металлов чаще всего рассматривается не с химической, а с медико-биологической и экологической точек зрения. Нужно отметить, что плодовые насаждения, произрастающие в парках и скверах городов, нередко используются людьми в пищу или в качестве лекарственного сырья. В этой связи встаёт вопрос о способности к аккумуляции тяжелых металлов представителями насаждений городских зон отдыха. Одним из видов зелёных насаждений города Оренбурга является шиповник майский (Rosa majalis Herrm.), который активно используется горожанами в качестве лекарственного сырья. В этой связи объектами наших исследований стали почвенный покров, а так же стебли и плоды Rosa majalis, произрастающего в парковых зонах, находящихся в различных частях города Оренбурга.

Экспериментально показано, что плоды Rosa majalis Herrm. на исследуемых территориях парков и скверов в некоторых случаях накапливают тяжелые металлы на уровне, превышающем предельно-допустимые концентрации. В ходе исследования была подтверждена барьерная функции стебля у Rosa majalis, т. к. стебли содержат большие концентрации тяжёлых металлов в отличие от плодов. Плоды Rosa majalis Herrm. в меньших концентрациях накаливают медь, однако в больших концентрациях аккумулируют цинк и свинец. Среди металлов — загрязнителей почв города Оренбурга чаще других присутствуют медь, цинк и свинец. Плоды произрастающего в парковых зонах г. Оренбурга Rosa majalis Herrm.

Результаты исследования позволили сделать вывод, что при содержании в почве меди выше уровня ПДК, не наблюдается повышение концентрации этого металла в плодах Rosa majalis, однако превышение предельно допустимых концентраций цинка и свинца в стеблях и плодах обнаружено даже при нормальных показателях в почве.

Ключевые слова: экология, тяжёлые металлы, плоды, почва.

Экологические проблемы городов, главным образом наиболее крупных из них, связаны с чрезмерной концентрацией на сравнительно небольших территориях населения, транспорта и промышленных предприятий с образованием антропогенных ландшафтов, очень далёких от состояния экологического равновесия [1]. Особую тревогу вызывает накопление ТМ в почвах и растениях городских экосистем из-за высокой плотности населения и значительной концентрации на их территориях промышленных объектов, чья производственная деятельность сопряжена с выбросами в окружающую среду большого объема самых разнообразных химических элементов [2]. Публикации зарубежных учёных также подтверждают информацию о токсическом воздействии тяжёлых металлов и об их способности накапливаться в живых организмах [3]–[4]. Загрязнение и накопление тяжелых металлов является серьезной проблемой во всем мире из-за токсичности, обильных

источников, невозможности биологического разложения и аккумулятивного поведения тяжелых металлов [5].

Роль тяжелых металлов двухфазна: они необходимы для нормального протекания физиологических процессов и считаются эссенциальными (жизненно важными) микроэлементами но являются токсикантами и при высоких концентрациях и причиняют вред организму [6]-[7]. Это связано с тем, что многие ферменты в организме функционируют в присутствии небольших количеств металлов-микроэлементов [8]. Избыточное их количество в организме связывается с функциональными группами жизненно важных соединений, и они становятся «металлическими ядами» [9]. Толерантность к тяжёлым металлам у растений генетически контролируется и имеет определённую ёмкость. Анализ литературных данных [10], [11] указывает на возможность поступления тяжёлых металлов в организм человека при употреблении в пищу плодов и ягод в определённых условиях [12].

На территории Южного Урала ранее были осуществлены исследования способности компонентов экосистем к поглощению тяжёлых металлов [13]. Рельеф местности, климатические условия и географическое положение города Оренбурга способствуют рассеиванию загрязняющих веществ в атмосферном воздухе и почве, кроме того, из-за малого количества осадков территория имеет низкую способность к самоочищению за счёт осадков [14]. В этой связи зелёные насаждения (парки, сады, скверы) являются значимой частью городской среды, так как они могут участвовать в процессах фиторемедиации. Однако опасная экологическая ситуация, сложившаяся в пределах городских территорий в связи с накоплением тяжёлых металлов в почвах и растениях парковых зон и уличных насаждений относится и к городу Оренбургу [15]–[16]. Особенности промышленности Оренбургской области обусловили характерный ряд тяжёлых металлов, загрязняющих среду: свинец, медь, цинк и кобальт. Также отмечено, что в пределах территории одного города в разных его районах концентрации тяжёлых металлов в почвах и растениях могут различаться в зависимости от влияния плотности транспортного потока и степени удалённости от промышленного объекта. В этой связи объектами наших исследований стали почвенный покров и насаждения Rosa majalis в парковых зонах, находящихся в различных частях города Оренбурга: первый участок – парк имени Гуськова, расположенный на проспекте Победы от улицы Монтажников до проезда Автоматики; второй участок – парк им. 50-летия СССР, находящийся в контуре улиц Театральной, проспекта Дзержинского, улицы Брестской; третий участок – сквер 8-ого Марта, расположенный на улице 8-ого марта между улицами Володарского и Профсоюзной; четвёртый участок - сквер у здания администрации Южного округа города Оренбурга; пятый участок - сквер Дельфин, расположенный у завода резинотехнических изделий на пересечении улиц Химической и Магистральной. Насаждения всех участков включают шиповник майский (Rosa majalis Herrm.).

Отбор проб почвы производился в соответствии с ГОСТ 174.3.01-83. Исследования вклю-

чали маршрутное обследование выбранных объектов, отбор образцов почвы, сбор плодов и стеблей Rosa majalis в конце вегетационного периода, когда накопление в частях растений тяжёлых металлов максимально[17]–[18]. Выбор элементов исследуемой группы тяжёлых металлов основывался на анализе ранее полученных данных, свидетельствующих о преобладании меди, цинка и свинца в составе загрязнителей компонентов экосистемы г. Оренбурга. Для анализа исследуемых образцов применялся метод атомно-адсорбционной спектрофотометрии с использованием спектрофотометра «Спектр-5-4» [19], весов ВЛКТ-500. Исследования растительных образцов проводились в соответствии с ГОСТ 30692, ГОСТ 30178 [20], почвенных образцов в соответствии с РД 52.18.289 (подвижная форма). Эколого-токсикологическая оценка полученных данных проводилась на основе ПДК тяжёлых металлов в сырье и пищевых продуктах (СанПиН 2.3.2.1078-01) и ПДК химических веществ в почвах (Гигиенические нормативы ГН 2.1.7.2041-06) [21]–[22].

Исследования степени аккумуляции тяжёлых металлов шиповником майским, произрастающим в парках и скверах г. Оренбурга показали, что в изучаемых почвенных и растительных образцах наблюдается превышение уровня предельно-допустимых концентраций по исследуемой группе тяжёлых металлов (табл. 1, рис. 1). Экспериментально установлено, что при содержании в почве меди выше уровня ПДК, не наблюдается повышение концентрации этого металла в плодах Rosa majalis. Нужно отметить, что исследуемые образцы стеблей шиповника майского содержат концентрации свинца близкие к тем, которые находятся в почве, так как стебли являются одним из первых барьеров для тяжёлых металлов. Обратная ситуация наблюдается с концентрацией цинка: на некоторых участках отмечено превышение предельно-допустимых концентраций этого элемента в стеблях и плодах при нормальных показателях в почве. Похожие результаты выявлены и в случае со свинцом, даже в ситуациях, когда его уровень накопления в почве не достигал высоких концентраций, плодами элемент аккумулировался в количестве, превышающем ПДК [23]–[25]. Нужно обратить особое внимание на исследуемый пятый участок, так как все

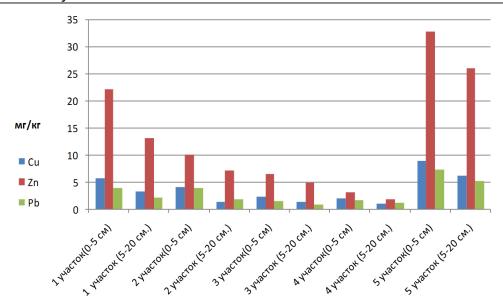


Рисунок 1 – Подвижные формы тяжёлых металлов в почвах исследованных парковых зон г. Оренбурга

Таблица 1 – Степень аккумуляции (мг/кг) ТМ вегетативными и генеративными органами Rosa majalis Herrm

металл	Cu		Zn		Pb	
участок	стебель	плод	стебель	плод	стебель	плод
парк им. Гуськова	4.8	2.7	17.9	12.3	0.38	0.52
парк 50 лет СССР	3.3	1.8	9.8	7.1	0.48	0.45
сквер 8 марта	2.0	0.9	5.8	3.3	0.28	0.17
сквер у здания администрации Южного округа	1.8	1.2	6.0	4.8	0.22	0.13
Сквер «Дельфин»	5.8	5.2	28.0	17.3	0.64	0.57
ПДК	5.0 мг/кг	5.0 мг/кг	10.0 мг/кг	10.0 мг/кг	$0.4~\mathrm{mg/kg}$	$0.4 \mathrm{mr/kr}$

отобранные на данном участке растительные и почвенные образцы аккумулируют все тяжёлые металлы исследуемой группы в концентрациях, превышающих норму. Это может быть связано с месторасположением участка в непосредственной близости от завода резинотехнических изделий и силикатного завода.

Анализ полученных данных позволил сделать выводы о барьерной функции стебля у Rosa majalis, т. к. стебли содержат большие концентрации тяжёлых металлов в отличии

от плодов. Кроме того, характер содержания тяжёлых металлов в изучаемых почвенных и растительных образцах напрямую связан с характером загрязнения отдельных участков Оренбурга и поскольку парки и скверы города являются зоной постоянного посещения людей, а плоды Rosa majalis нередко собираются и используются в качестве лекарственных средств, на результаты наших исследований нужно обратить особое внимание.

15.06.2017

Список литературы:

^{1.} Анилова, Л.В. Аккумуляция тяжёлых металлов растениями – типичными представителями флоры г. Оренбурга/Л.В. Анилова, О.В. Примак, Т.Н.Васильева // Известия ОГАУ.—2013.—№2.— С. 223-225.

^{2.} Галактионова Л.В., Степанова М.А., Тесля А.В., Ануфриенко А.А. Сравнительный анализ способности представителей флоры урбанизированных территорий к аккумуляции тяжёлых металлов // Вестник ОГУ. − 2013. − №10.

^{3.} Кабата-Пендиас, А. Проблемы современной биогеохимии микроэлементов / А. Кабата-Пендиас // Российский химический журнал (Ж. Рос.хим об-ва им. Д.И. Менделеева). – №3 – 2005. – С. 15 – 19.

- 4. Климентьев, А.И. Геоэкологическая оценка почвенного покрова урбанизированных территорий (на примере г. Оренбурга) / А.И. Климентьев, И.В. Ложкин, А.П. Трубин. Екатеринбург: УрО РАН, 2006. 181 с.
- 5. Мотылёва С.М. Особенности содержания тяжёлых металлов (Pb, Ni, Zn, Fe, Cu) в плодах, ягодах и атмосферных осадках в связи с оценкой сортов для использования в селекции. Автореферат диссертации кандидата с. х. наук. СПб, 2000.
- 6. Мудрый И.В. Тяжёлые металлы в системе почва-растения-человек. Гигиена и санитария. 1997, №9, с. 14-21.
- 7. Николаевская И.А. Благоустройство городов. 2 изд. доп. и перераб. М.: Высшая школа, 1990. 160 с.
- 8. Русанов А.М., Тесля А.В., Прихожай Н.И., Турлибекова Д.М. Содержание валовых и подвижных форм тяжелых металлов в почвах г. Орска // Вестник ОГУ. 2012. №4. С.226 229.
- 9. Русанов А.М., Турлибекова Д.М. Мониторинг снегового покрова города Орска / Материалы V межд. НПК "Урбоэкосистемы: проблемы и перспективы развития", Ишим, 2010, С.220 -221.
- Русанов А.М., Турлибекова Д.М. Тяжёлые металлы в плодах шиповника парков города Орска // Вестник ОГУ. 2011. №12.;
- 11. Русанов, А. М. Содержание тяжелых металлов в плодах яблони в городских условиях / А. М. Русанов, Е. 3. Савин, С. Э. Нигматянова, М. М. Нигматянов, М. А.Степанова // Вестник ОГУ. 2011. №1.С.148 151.
- 12. Скворцова, Т.А. Избирательная аккумуляция тяжёлых металлов представителями семейства Rosaceae в условиях города Оренбурга (на примере Malus cerasifera Spach. и Malus prunifolia (Willd.) / Т.А. Скворцова / Вестник ОГУ. 2017. №3.
- 13. Степанова, М.А. Аккумуляция тяжёлых металлов яблоней дикой (MalusSylvestris) в условиях города Бузулука / М.А. Степанова // Вестник ОГУ. − 2013. №6.
- 14. Степанова, М.А. Тяжёлые металлы в почвах и растениях улиц города Бузулука (на примере рябины обыкновенной) / М.А. Степанова // Вестник ОГУ. 2011. №12.
- 15. Ambika Asati, Mohnish Pichhode and Kumar Nikhil Effect of Heavy Metals on Plants: An Overview / International Journal of Application or Innovation in Engineering and Management (IJAIEM), Volume 5, Issue 3, March 2016, P. 56-66.
- 16. Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M.; Ahmadimoghaddam, M.; Mahvi, A.H. Effect of fertilizer application on soil heavy metal con-centration. Environ Monit. Assess. 2010, 160, 83–89.
- 17. Bifeng Hu, Xiaolin Jia, Jie Hu, Dongyun Xu, Fang Xia and Yan Li Assessment of Heavy Metal Pollution and Health Risks in the Soil-Plant-Human System in the Yangtze River Delta, China / Int. J. Environ. Res. Public Health 2017, 14(9), 1042; doi:10.3390/ijerph14091042.
- 18. Jolly, Y.N.; Islam, A.; Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. Springerplus 2013, 2, 385.
- 19. Khan S., S. Rehman, AZ. Khan and M.T. Shah. 2010. Soil and vegetables enrichment with heavy metals from geological sources in Gilgat, Pakistan. Ecoto. Environ. Safty, 73: 1820-1827.
- 20. Kisku G. C., Markandeya, Kushwaha H., Arora S (2016) Environmental Health Risk Estimation of Heavy Metals Accumulated in Soil and Cultivated Plants Irrigated with Industrial Effluents. Adv Recycling Waste Manag 1: 108. doi: 10.4172/arwm.1000108.
- 21. Leiming Fu; Chunxia He; Yifei Chen, Distribution characteristics of heavy metal pollution in soil under recycling mode of direct straw manuring / Nature Environment & Pollution Technology. Sep2017, Vol. 16 Issue 3, 703-710.
- 22. Niu, L.L.; Yang, F.X.; Xu, C.; Yang, H.Y.; Liu, W.P. Status of metal accumulation in farmland soils across China: From distribution to risk assessment. Environ. Pollut. 2013, 176, 55–62.
- 23. Nriagu, J.O. A history of global metal pollution. Science 1990, 272, 223-224.
- 24. Oves M, Saghir Khan M, Huda Qari A, Nadeen Felemban M, Almeelbi T (2016) Heavy Metals: Biological Importance and Detoxification Strategies. J Bioremed Biodeg 7: 334. doi: 10.4172/2155-6199.1000334.
- 25. Zafar Iqbal Khan, Kafeel Ahmad, Muhammad Ashraf, Sumara Yasmeen, Asma Ashfaq and Muhammad Sher Metal accumulation in a potential winter vegetable mustard (brassica campestris L.) irrigated with different types of waters in Punjab, Pakistan / Pak. J. Bot., 48(2): 535-541, 2016.

Сведения об авторе:

Скворцова Татьяна Андреевна, аспирант кафедры биологии и почвоведения химико-биологического факультета Оренбургского государственного университета 460018, г. Оренбург, пр-т Победы, 13, e-mail:atanya-92@mail.ru