# Захаров П.В.<sup>1</sup>, Ерёмин А.М.<sup>1</sup>, Старостенков М.Д.<sup>2</sup>, Манаков Н.А.<sup>3</sup>

<sup>1</sup>Алтайский государственный гуманитарно-педагогический университет им. В.М. Шукшина <sup>2</sup>Алтайский государственный технический университет им. И.И. Ползунова <sup>3</sup>Оренбургский государственный университет

# ВЗАИМОДЕЙСТВИЕ ДВИЖУЩЕГОСЯ ДИСКРЕТНОГО БРИЗЕРА С ТОЧЕЧНЫМ ДЕФЕКТОМ В КРИСТАЛЛЕ СОСТАВА А,В

Методом молекулярной динамики изучаются взаимодействия движущегося дискретного бризера с точечным дефектом в кристалле состава A<sub>3</sub>B на примере Pt<sub>3</sub>AI. Проблема взаимодействия солитонных объектов с топологическими дефектами в кристалле является важной для оценки перспектив использования таких солитонов, как дискретный бризер, в технологических процессах.

В качестве точечного дефекта выступал межузельный атом AI, помещенный в тетраэдрическую пустоту данного кристалла. Для возбуждения движущегося дискретного бризера отклонялись из положения равновесия два атома AI на величину 0,5–1 A и 1 A в противоположные стороны вдоль плотноупакованного направления, тем самым задавалась начальная скорость движения дискретного бризера по кристаллу. Возбуждение движущегося дискретного бризера возможно вдоль плотноупакованных направлений: <110>, <011>, <101>, <100>. В выбранной модели в колебаниях движущегося дискретного бризера принимают участие несколько атомов «легкой подрешетки». В этом случае движущиеся дискретные бризеры смогут перемещаться по кристаллу на значительные расстояния, практически не рассеивая своей энергии.

Полученные данные позволяют судить о влияний движущегося дискретного бризера на точечный дефект в кристалле в зависимости от его скорости, энергии и удаленности от дефекта. Тем самым открывают перспективу использования подобных объектов в качестве анализатора чистоты сплава и дефектных структур в кристаллах состава А.В. Кроме того подобные объекты могут быть использованы для переноса энергии или информации вдоль кристалла.

Ключевые слова: дискретный бризер, квази-бризер, точечный дефект, молекулярная динамика.

#### Введение

В последнее время значительное внимание уделяется изучению нелинейного объекта – дискретного бризера (ДБ), который представляет собой локализованное в пространстве незатухающее колебание большой амплитуды в бездефектной нелинейной дискретной системе [1]. В реальных моделях кристаллов следует говорить о квази-бризерах, имеющих конечное время жизни и нестрогую периодичность колебаний во времени [2]. Предполагается, что ДБ участвуют в различных процессах твёрдых телах. В частности, ДБ могут повышать каталитические свойства наночастиц с неупорядоченной структурой, приводить к радиационно-стимулированному росту пор в металлах, вносить вклад в диффузию, транспортировать электрический заряд, приводить к отжигу дефектов, снижать энергетический барьер химических реакций в кристаллических твёрдых телах и т. д.

ДБ можно разделить на два типа по характеру зависимости их частоты от амплитуды [3]. У ДБ мягкого типа частота уменьшается с увеличением его амплитуды (такие ДБ могут существовать только в кристаллах имеющих щель в фононном спектре: их частота лежит в щели фононного спектра и поэтому их называют щелевыми), а у ДБ жесткого типа происходит обратное (они могут иметь частоты, как в щели, так и выше фононного спектра). ДБ с мягким типом нелинейности могут возбуждаться в биатомных кристаллах, например, в NaCl [3],  $Pt_3Al[4]$ –[13], а также в графене и графане [14]–[15]. Бризеры с жестким типом нелинейности существуют в чистых металлах с ГЦК, ОЦК, ГПУ структурах. Движущийся ДБ – это частный случай дискретного бризера с жёстким типом нелинейности пом нелинейности. Целью настоящей работы является изучение взаимодействия движущегося дискретного бризера с точечным дефектом в кристалле состава  $A_3$ В на примере  $Pt_3$ Al.

#### Модель и методика эксперимента

Рассматриваемая модель представляла собой объемный кристалл  $Pt_3Al$  со сверхструктурой  $L1_2$  на основе ГЦК решетки. Расчетная ячейка размером 225,71 x 29,32 x 20,73 A содержала 8640 атомов (рис. 1). В качестве точечного дефекта выступал межузельный атом Al, внедренный в эту структуру. Ось X модели соответствовала <110 >, ось Y - <111 >, ось Z - <112 >. Использовались периодические граничные усло-

#### Взаимодействие движущегося дискретного бризера...

вия. Межатомное взаимодействие задавалось посредством парного потенциала Морзе:

$$\phi_{PQ}\left(r_{ij}\right) = D_{PQ} \beta_{PQ} \exp\left(-\alpha_{PQ} r_{ij}\right) \left(\beta_{PQ} \exp\left(-\alpha_{PQ} r_{ij}\right) - 2\right), (1)$$

где D,  $\beta$  и  $\alpha$  – параметры потенциала,  $r_{ij}$  – расстояние между атомами і и j.

Параметры D, β и α определялись из следующих условий:

$$\frac{1}{2}\sum_{i=1}^{z}\eta_{i}\phi_{V=V_{0}} = E_{s}, \ \frac{1}{2}\sum_{i=1}^{z}\eta_{i}\left(\frac{\partial\phi}{\partial V}\right)_{V=V_{0}} = 0, -V_{0}\cdot\left(\frac{\partial P_{s}}{\partial V}\right) = K_{0}.$$
(2)

Здесь  $E_S$  – энергия сублимации атомов кристалла;  $K_0$  – объемный модуль упругости;  $P_s$  – давление изоэнтропического сжатия;  $V_0$  и V – удельные объемы в начальном и деформированном состоянии;  $\eta_i$  – число атомов в i-ой координационной сфере.

Возбуждение движущегося ДБ возможно вдоль плотноупакованных направлений: <110>, <011>, <101>, <110>. В выбранной модели в колебаниях движущегося ДБ принимают участие несколько атомов «легкой подрешетки». В этом случае движущиеся ДБ смогут перемещаться по кристаллу на значительные расстояния, практически не рассеивая своей энергии. Для возбуждения движущегося ДБ отклонялись из положения равновесия два атома Al на величину 0,5–1 A и 1 A в противоположные стороны вдоль плотноупакованного направления, как показано на рис. 2 (цифрами 1 и 2 обозначены атомы, выведенные из положения равновесия в нулевой момент времени, цифрой З обозначен точечный дефект в виде межузельного атома Al, внедренный в тетраэдрическую пустоту кристалла).

#### Результаты и их обсуждения

Нами получены зависимости энергии движущегося дискретного бризера в период столкновения с точечным дефектом, времени движения ДБ по кристаллу, частоты и амплитуды колебаний атомов, находящихся вблизи точечного дефекта от отклонений одного из атомов Al (0,5–1 A) на одном из которых было проведено возбуждение движущегося дискретного бризера, а так же от скорости движения ДБ по кристаллу.

На рис. За приведена зависимость t (времени движения движущегося ДБ до первого столкновения с дефектом в пс) от  $\Delta$  (отклонения абсциссы правого атома Al в A при фиксированном отклонении левого атома Al в 1 A от положения равновесия), а на рис. Зb приведена зависимость t от  $\upsilon$  (скорость движения движущегося ДБ по кристаллу в A/пс).

На рис. 4а приведена зависимость  $\varepsilon$  (энергия движущегося ДБ непосредственно при столкновении с дефектом в эВ) от  $\upsilon$ , а на рис. 4b приведена зависимость  $\varepsilon$  от  $\Delta$ . На рис. 5 приведена зависимость  $\upsilon$  от  $\Delta$ .



Рисунок 2. Плоскость (111) кристалла Pt<sub>3</sub>Al: начальные условия для возбуждения движущегося ДБ вдоль направления <110 > .



Рисунок 1. Вид объемной модели расчетной ячейки кристалла Pt<sub>3</sub>Al с указанием кристаллографических направлений, черным цветом обозначены атомы Pt, серым – Al.

Из данных зависимостей видно:

1. При изменении  $\Delta$  – отклонение абсциссы правого атома Al от положения равновесия на величину 0,825–1 А движущийся ДБ доходит до дефекта, упруго сталкивается с ним, взаимодействует с дефектом порядка 0,63 пс и движется в противоположную сторону, при этом взаимодействии отдает часть своей энергии порядка 0,113 эВ. Энергия движущегося ДБ в период первого столкновения с дефектом варьируется от 2 до 2,9 эВ. При взаимодействии движущегося ДБ с точечным дефектом он отдает около 5% своей энергии дефекту, а затем продолжает свое движение в противоположную сторону. Частота колебаний атомов вблизи точечного дефекта варьируется от 12,65 до 12,85 ТГц, а их амплитуда варьируется от 0,025 до 0,08 А. При данном взаимодействии, движущегося ДБ с дефектом, его скорость движения варьируется от 3,19 до 5,20 А/пс.

2. При изменении  $\Delta$  – отклонение абсциссы правого атома Al от положения равновесия на величину 0,725–0,8 A движущийся ДБ доходит до дефекта, сталкивается с ним, взаимодействует с дефектом порядка 1,26 пс и разрушается. При вза-

имодействии движущегося ДБ с точечным дефектом дискретный бризер отдает около 7% своей энергии дефекту, а затем разрушается. Частота колебаний атомов вблизи точечного дефекта варьируется от 12,58 до 12,67 ТГц, а их амплитуда варьируется от 0,03 до 0,045 А. При данном взаимодействии, движущегося ДБ с дефектом, его скорость движения варьируется от 4,85 до 5,20 А/пс.

3. При изменении  $\Delta$  – отклонение абсциссы правого атома Al от положения равновесия на величину 0,5–0,7 A движущийся ДБ проходит расстояние, которое варьируется от 21,8 до 39,83 A и разрушается, до дефекта он не доходит и соответственно не взаимодействует с ним. Энергия движущегося ДБ при данном взаимодействии варьируется от 1,25 до 0,98 эВ, а его скорость движения варьируется от 2,8 до 4,51 A/пс. Частота колебаний атомов вблизи точечного дефекта варьируется от 0,005 до 0,028 A.

В таблице 1 приведены средние значения скорости движения ДБ по кристаллу, средняя энергия движущегося ДБ при столкновении с дефектом, средняя амплитуда и частота колебаний атомов вблизи точечного дефекта.



Рисунок 3. а) Зависимость t(v); b) Зависимость  $t(\Delta)$ .

100 ВЕСТНИК ОРЕНБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА 2016 № 3 (191)

### Захаров П.В. и др.

#### Взаимодействие движущегося дискретного бризера...

Из данных табличных числовых значений видно, что при средней скорости движения движущегося ДБ по кристаллу порядка 4,79 А/пс, наблюдается упругое взаимодействие движущегося ДБ с точечным дефектом. Движущийся ДБ доходит до дефекта, взаимодействует с ним и движется назад. При этом взаимодействии средняя амплитуда и частота колебаний атомов вблизи точечного дефекта соответственно равна 0,058 А и 12,76 ТГц. Если скорость движущегося ДБ увеличить до 5,09 А/пс, то движущийся ДБ, дойдя до дефекта, при взаимодействии с ним разрушается. При этом взаимодействии средняя амплитуда и частота колебаний атомов вблизи точечного дефекта соответственно равна 0,044 A и 12,63 ТГц. Незначительное уменьшение амплитуды и частоты колебаний близ лежащих атомов с точечным дефектом очевидно связано с тем, что средняя энергия движущегося ДБ при упругом взаимодействии с точечным дефектом равна 2,5 эВ, а для случая, когда ДБ разрушается на дефекте равна 1,93 эВ. При уменьшении скорости движущегося ДБ до 3,38 А/пс, движущийся ДБ не доходит до дефекта и не взаимодействует с ним, при этом амплитуда и частота колебаний близ лежащих атомов с точечным дефектом соответственно равна 0,015 А и 4,58 ТГц, что говорит о очень малом воздействии движущегося ДБ на дефект.







Рисунок 5. Зависимость  $v(\Delta)$ .

| $\Delta$ – отклонение атома Al в A                                         | 0,825-1 | 0,725–0,8 | 0,5–0,7 |
|----------------------------------------------------------------------------|---------|-----------|---------|
| t <sub>cp</sub> – средняя скорость движения ДБ по кристаллу в А/пс         | 4,79    | 5,09      | 3,38    |
| <sub>ε cp</sub> – средняя энергия ДБ при столкновении с<br>дефектом в эВ   | 2,5     | 1,93      | 1,13    |
| А <sub>ср</sub> – средняя амплитуда колебаний атомов<br>вблизи дефекта в А | 0,058   | 0,044     | 0,015   |
| υ <sub>ср</sub> – средняя частота колебаний атомов<br>вблизи дефекта в ТГц | 12,76   | 12,63     | 4,58    |

Таблица 1. Средние значения числовых характеристик, движущегося дискретного бризера.

## Заключение

Методом молекулярной динамики моделируется взаимодействие движущегося дискретного бризера, который является частным случаем дискретного бризера с жестким типом нелинейности, с точечным дефектом в виде межузельного атома Al, помещенным в тетраэдрическую пустоту кристалла состава  $A_3$  B на примере Pt<sub>3</sub>Al. Для возбуждения движущегося ДБ отклонялись из положения равновесия два атома Al на величину 0,5–1 A и 1 A в противоположные стороны вдоль плотноупакованного направления, тем самым задавалась начальная скорость движения ДБ по кристаллу. Возбуждение движущегося ДБ возможно вдоль плотноупакованных направлений: <110>, <011>, < 101 >, < 110 >. В выбранной модели в колебаниях движущегося ДБ принимают участие несколько атомов «легкой подрешетки». В этом случае движущиеся ДБ смогут перемещаться по кристаллу на значительные расстояния, практически не рассеивая своей энергии.

Столкновение дискретного бризера с точечным дефектом кристалла не приводит к рассеиванию энергии, а лишь изменяет направление его движение на противоположное. Тем самым открывая перспективу использования подобных объектов в качестве анализатора чистоты сплава и дефектных структур в кристаллах состава А<sub>3</sub>В. Кроме того подобные объекты могут быть использованы для переноса энергии или информации вдоль материала.

16.02.2016

## Работа выполнена при финансовой поддержке РФФИ, в рамках проекта № 16-42-220002р\_а.

#### Список литературы:

Sievers A.J., Takeno S. Intrinsic localized modes in anharmonic crystals // Phys. Rev. Lett. – 1988. – V. 61. – № 8. – P. 970–973.
 Chechin G. M., Dzhelauhova G. S., and Mehonoshina E. A. Quasibreathers as a generalization of the concept of discrete breathers // Phys. Rev. E. – 2006. – Vol. 74. – P. 36608.

Инуз. Rev. E. 2000. 101. 1. Побосос.
 Дмитриев С.В., Хадеева Л.З. Щелевые дискретные бризеры в двухкомпонентном двумерном кристалле в состоянии теплового равновесия // Физика твердого тела. – 2011. – Т. 53. – №7. – С. 1353–1358.
 Медведев Н.Н., Старостенков М.Д., Потекаев А.И., Захаров П.В., Маркидонов А.В., Ерёмин А.М. Локализация энергии

<sup>4.</sup> Медведев Й.Н., Старостенков М.Д., Потекаев А.И., Захаров П.В., Маркидонов А.В., Ерёмин А.М. Локализация энергии в упорядоченных конденсированных системах: сплавы состава А<sub>3</sub>В со сверхструктурой L1<sub>2</sub> // Известия высших учебных заведений. Физика. – 2014. – Т. 57, № 3. – С. 92–100.

<sup>5.</sup> Захаров П.В., Старостенков М.Д., Ерёмин А.М., Маркидонов А.В. Поведение нелинейной локализованной моды вблизи комплексов вакансий в кристалле Pt<sub>3</sub>Al // Фундаментальные проблемы современного материаловедения. – 2014. – Т. 11, № 2. – С. 260-264.

<sup>6.</sup> Захаров П.В., Старостенков М.Д., Медведев Н.Н., Ерёмин А.М., Маркидонов А.В. Антисимметричный дискретный бризер в кристалле Pt<sub>3</sub>Al // Фундаментальные проблемы современного материаловедения. – 2014. – Т. 11, № 3. – С. 388–393.

<sup>7.</sup> Захаров П.В., Старостенко М.Д., Медведев Н.Н., Ерёмин А.М., Маркидонов А.В. Влияние низких температур на характеристики дискретного бризера в кристалле Pt<sub>3</sub>Al // Фундаментальные проблемы современного материаловедения. – 2014. – Т. 11, № 4. – С. 533–536.

Zakharov P.V., Medvedev N.N., Starostenkov M.D., Eremin A.M. Prospects for the use of dynamic discrete breathers in nanofibers crystals stoichiometry A<sub>3</sub>B with the structure of L1<sub>2</sub>//2015 International Siberian Conference on Control and Communications (SIBCON). Proceedings. – Omsk: Omsk State Technical University. Russia, Omsk, May 21?23, 2015. IEEE Catalog Number: CFP15794-CDR. ISBN: 978-1-4799-7102-2.

<sup>9.</sup> Захаров П.В., Ерёмин А.М., Старостенков М.Д., Маркидонов А.В., Луценко И.С. Квазибризерные состояния в кристалле А<sub>3</sub>В при наличии точечных дефектов // Фундаментальные проблемы современного материаловедения. – 2015. – Т. 12, № 2. – С. 146–152.

#### Взаимодействие движущегося дискретного бризера...

- 10. Захаров П.В., Старостенков М.Д., Дмитриев С.В., Медведев Н.Н., Ерёмин А.М. Моделирование взаимодействия дискретных бризеров различного типа в нановолокне кристалла Pt., Al // Журнал экспериментальной и теоретической физики. – 2015. – Т. 148, вып. 2(8). – С. 252–257. 11. Старостенков М.Д., Потекаев А.И., Дмитриев С.В., Захаров П.В., Ерёмин А.М., Кулагина В.В. Динамика дискретных
- бризеров в кристалле Pt<sub>4</sub>Al // Известия высших учебных заведений. Физика. 2015. Т. 58, № 9. С. 136–140.
- 12. Захаров П.В., Ерёмин А.М., Старостенков М.Д., Маркидонов А.В. Компьютерное моделирование нелинейной локализованной колебательной моды большой амплитуды в кристалле Pt<sub>4</sub>Al с бивакансией Pt // Компьютерные исследования и моделирование. – 2015. – Т. 7, № 5. – С. 1089–1096. 13. Захаров П.В., Ерёмин А.М., Манаков Н.А., Старостенков М.Д., Маркидонов А.В. Поведение квази-бризерной моды в
- кристалле Рt<sub>4</sub>Al при наличии точечных дефектов // Вестник Оренбургского государственного университета. №9 (184). - 2015. - C. 38-44.
- 14. Баимова Ю.А., Ямилова А.Б., Лобзенко И.П., Дмитриев С.В., Чечин Г.М. Двумерные кластеры дискретных бризеров в графене // Фундаментальные проблемы современного материаловедения. – 2014. – Т.11 (4/2). – С. 599–604. 15. Хадеева Л.З., Дмитриев С.В., Кившарь Ю.С. Дискретные бризеры в деформированном графене // Письма в журнал
- экспериментальной и теоретической физики. 2011. Т. 94. Вып. 7. С. 580–584.

### Сведения об авторах:

Захаров Павел Васильевич, доцент кафедры физики и информатики Алтайского государственного гуманитарно-педагогического университета им. В.М. Шукшина, кандидат физико-математических наук

Ерёмин Александр Михайлович, доцент кафедры математики и методики обучения математике Алтайского государственного гуманитарно-педагогического университета им. В.М. Шукшина, кандидат физико-математических наук, доцент

Старостенков Михаил Дмитриевич, заведующий кафедрой физики Алтайского государственного технического университета им. И.И. Ползунова, доктор физико-математических наук, профессор

Манаков Николай Александрович, профессор кафедры общей физики Оренбургского государственного университета, доктор физико-математических наук, профессор

460018, г. Оренбург, пр-т Победы, 13