Кучеренко М.Г., Чмерева Т.М.

Оренбургский государственный университет E-mail: clibph@mail.osu.ru

БЕЗЫЗЛУЧАТЕЛЬНАЯ ТРАНСФОРМАЦИЯ ЭНЕРГИИ ЭЛЕКТРОННОГО ВОЗБУЖДЕНИЯ В МНОГОСЛОЙНЫХ ПЛАНАРНЫХ НАНОСТРУКТУРАХ «МЕТАЛЛ-ДИЭЛЕКТРИК»

Произведены расчеты характеристик ближнего квазистатического поля дипольного источника в трехслойной планарной системе методом построения диполей-изображений в проводящей и диэлектрической средах. В последней учтена возможность генерации коллективных электронных возбуждений — экситонов Френкеля с формированием соответствующих резонансных полос в частотной зависимости диэлектрической проницаемости молекулярного кристалла. Показано, что проникновение поля в каждую из сред существенно зависит от соотношения частоты колебаний первичного (донорного) диполя и частот экситонных и плазмонных резонансов молекулярно-кристаллической и проводящей сред. На основе найденных характеристик поля рассчитаны частотные зависимости скорости безызлучательного переноса энергии электронного возбуждения донорной молекулы, локализованной в тонком внутреннем слое, к находящейся в том же слое акцептирующей металлической наночастице сферической формы. Исследовано влияние конфигурационных характеристик композитной системы, а также характерных частотных параметров проводящих материалов на скорость передачи энергии.

Ключевые слова: многослойная структура, квазистатическое поле, экситоны, плазмонный резонанс, безызлучательный перенос энергии

В настоящее время в связи с интенсивным развитием ближнепольной сканирующей оптической микроскопии, а также физики поверхности и тонких пленок, представляет интерес исследование процессов безызлучательной передачи энергии электронного возбуждения в планарных многослойных структурах с характерной толщиной слоя порядка 10-100 нм [1]–[9]. В предельных вариантах параметры внешних слоев могут превышать эти значения, вплоть до макроскопических размеров, превращая, тем самым, краевые слои в массивные подложки. Каждый из слоев представляет собой однородную однофазную среду с высокой (металл, полупроводник), или низкой (диэлектрик) электрической проводимостью. В случае проводящей среды, как правило, учитывается частотная дисперсия ее диэлектрической проницаемости, а для диэлектрических слоев такой учет производится лишь при наличии резонансов в рассматриваемой области частот.

В работе [1] была рассмотрена задача о скорости межмолекулярного диполь-дипольного переноса энергии в трехслойной среде без акцентирования внимания на проводящих свойствах материалов, составляющих такую — композитную среду, и наличия резонансов в функциях отклика этих материалов на частотах молекулярных переходов. В [2-3] безызлучательный перенос энергии рассмотрен в системе «полупроводниковая квантовая яма-органическая среда».

Авторами [2]—[3] установлено, что квазистатическое поле двумерных экситонов Ваннье-Мотта эффективно диссипирует в органическом материале, граничащем с квантовой ямой. В [4] было показано, что характеристики скорости такой диссипации могут быть существенно изменены посредством сопряжения планарной системы с металлической подложкой и включением поверхностно-плазмонных мод последней в энергодинамику композита.

В работе [5] рассмотрена передача энергии электронного возбуждения между молекулами, адсорбированными поверхностью молекулярного кристалла, через виртуальные и реальные поверхностные экситоны Френкеля. Проведенными вычислениями для систем подобных кристаллическому антрацену показано, что процесс передачи энергии между адсорбатами через виртуальные коллективные возбуждения молекул среды, моделирующие влияние поверхности, происходит с вероятностью, зависящей экспоненциально от расстояния между донором и акцептором в случае триплет-триплетного механизма передачи, и с вероятностью, уменьшающейся с расстоянием по степенному закону, для синглет-синглетного механизма передачи.

В [6-8] исследован безызлучательный перенос энергии электронного возбуждения между молекулами, размещенными вблизи плоской поверхности проводника. Предложена математическая модель, в которой наличие границы конден-

сированной фазы учитывается введением эффективного диполя-изображения и диэлектрической проницаемости среды на частоте электронного перехода в молекуле донора. Установлен вид дистанционной зависимости и характеристики анизотропии скорости переноса энергии в донор-акцепторной паре адсорбатов. В чисто квантовой модели, развитой на основе формализма вторичного квантования плазменных колебаний электронной плотности в металле показано, что эффективным механизмом энергопередачи в рассматриваемой системе может быть механизм с участием поверхностных плазмонов. Произведены сравнительные оценки эффективностей прямого диполь-дипольного и плазмонного каналов переноса энергии. Предсказан доминирующий вклад плазмонного механизма в общую скорость энергопередачи (превышающий на 1-2 порядка скорость переноса в системе без проводящих тел) при близком расположении молекул относительно поверхности металла и слабо выраженном затухании плазмонов

В [9] экспериментально исследован безызлучательный триплет-синглетный перенос энергии электронного возбуждения между молекулами органических красителей «эритрозин-метиленовый голубой» в полимерной пленке, нанесенной на поверхность серебряного слоя. Обнаружено уменьшение эффективности переноса энергии в такой системе по сравнению с образцами, не содержащими слоя металла. Предложена математическая модель процесса, качественно согласующаяся с результатами эксперимента. Наконец, в недавней работе [10] представлено решение задачи о резонансном упругом рассеянии поляризованного света наночас-

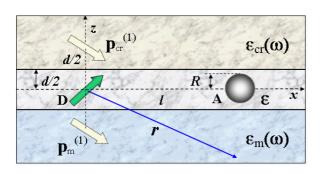


Рисунок 1. Трехслойная планарная структура «металл-диэлектрик-молекулярный кристалл». В середине диэлектрического слоя (z=0) размещена D-A-пара «возбужденный молекулярный центракцептирующая наноглобула»

тицей и квантовой ямой, находящимися вблизи поверхности полупроводника.

В данной работе исследован безызлучательный перенос энергии в трехслойной планарной системе, представляющей собой тонкую диэлектрическую пленку с внедренными в нее донорными молекулярными центрами, сопряженную с металлической средой, заполняющей полупространство с одной стороны, и молекулярным кристаллом — с другой. Акцептирующие частицы также расположены внутри пленки, а граничащие с ней среды способствуют изменению характеристик переноса, за счет возбуждения в них квазичастиц — плазмонов и экситонов, соответственно.

Донор-акцепторный перенос энергии в слое, сопряженном с проводящей и кристаллической средами

Диэлектрическую проницаемость пленки ε на частотах оптических переходов в молекулах принимаем постоянной и действительной. Диэлектрическую проницаемость металла $\varepsilon_{m}(\omega)$ и кристаллической среды $\varepsilon_{cr}(\omega)$, наоборот, считаем комплексными и частотозависящими. Рассмотрим размещенную в пленке отдельную молекулу донора D и близлежащую к ней наночастицу А (например, металлическую), которая выполняет функцию акцептора (рис. 1). За направление оси z, принимаем направление нормали к поверхности пленки. Начало координат совмещаем с донором. Ось х направим параллельно поверхности пленки от донора к акцептору. Донором является молекула, находящаяся в возбужденном состоянии и имеющая некоторый переходный дипольный момент ${\bf p}_D$. Толщину диэлектрической пленки принимаем равной нескольким нанометрам. Электромагнитное поле, создаваемое колеблющимся дипольным моментом донора, сильно изменяется двумя поляризующимися средами, заполняющими нижнюю и верхнюю части пространства вне слоя.

Построение диполей-изображений для описания колебаний зарядовой плотности в металле и органическом кристалле в квазистатическом приближении

Рассмотрим влияние диполя на зарядовую плотность в металле и кристаллической среде в квазистатическом приближении. Для описания

поляризации неоднородной среды используем метод построения диполей-изображений, справедливость которого обоснована в случае ближнего поля.

Будем полагать, для простоты, что донорный центр находится в средней плоскости пленки, на равных расстояниях d/2 от ее границ. Диполь \mathbf{p}_D донора индуцирует перераспределение зарядовой плотности, как в металле, так и в органической среде. Для диполя-изображения первого порядка в металле $\mathbf{p}_m^{(1)}$ и в кристаллической среде $\mathbf{p}_{cr}^{(1)}$ получаем следующие выражения ($\mathbf{p}_D = \mathbf{n}_x p_{Dx} + \mathbf{n}_z p_{Dz}$) [4]

$$\mathbf{p}_{m}^{(1)} = -\frac{\varepsilon_{m}(\omega) - \varepsilon}{\varepsilon_{m}(\omega) + \varepsilon} (\mathbf{p}_{D} - 2\mathbf{n}_{z} p_{Dz}), \qquad (1)$$

$$\mathbf{p}_{cr}^{(1)} = -\frac{\varepsilon_{cr}(\omega) - \varepsilon}{\varepsilon_{cr}(\omega) + \varepsilon} (\mathbf{p}_D - 2\mathbf{n}_z p_{Dz}), \qquad (2)$$

причем расстояние между диполем донора и каждым из его первых изображений равны d (диполь и его изображения лежат на прямой, перпендикулярной поверхности пленки). О направлении векторов диполей-изображений можно говорить достаточно условно в силу

того, что множители в правых частях (1)-(2) содержат комплекснозначные диэлектрические проницаемости металла и кристаллической среды.

Для более точного расчета характеристик поля необходимо учесть, что диполь-изображение донора в металле влияет на поляризацию кристаллической среды, а диполь-изображение в кристалле, в свою очередь, влияет на поляризацию металла. Таким образом, имеет место взаимное влияние граничащих с пленкой сред друг на друга. Продолжая тот же алгоритм построения, что и (1)-(2), получаем изображение второго порядка $\mathbf{p}_{cr}^{(2)}$ в кристаллической среде от диполя $\mathbf{p}_{m}^{(1)}$, а также изображение $\mathbf{p}_{m}^{(2)}$ в металле от диполя $\mathbf{p}_{cr}^{(1)}$ (рис. 1).

Модули векторов $\mathbf{p}_{cr}^{(2)}$ и $\mathbf{p}_{m}^{(2)}$ совпадают по величине и определяются выражением

$$|\mathbf{p}_{m}^{(2)}| = |\mathbf{p}_{cr}^{(2)}| = \left[\frac{\varepsilon_{m}(\omega) - \varepsilon}{\varepsilon_{m}(\omega) + \varepsilon}\right] \left[\frac{\varepsilon_{cr}(\omega) - \varepsilon}{\varepsilon_{cr}(\omega) + \varepsilon}\right] |\mathbf{p}_{D}|.(3)$$

Продолжая данную цепочку построений, получаем на n-м шаге диполи-изображения n-го порядка

$$|\mathbf{p}_{m}^{(n)}| = \left[\frac{\varepsilon_{m}(\omega) - \varepsilon}{\varepsilon_{m}(\omega) + \varepsilon}\right]^{\frac{1}{2}\binom{n + \left|\sin\frac{\pi n}{2}\right|}{2}} \left[\frac{\varepsilon_{cr}(\omega) - \varepsilon}{\varepsilon_{cr}(\omega) + \varepsilon}\right]^{\frac{1}{2}\binom{n - \left|\sin\frac{\pi n}{2}\right|}{2}} |\mathbf{p}_{D}|, \tag{4}$$

$$|\mathbf{p}_{cr}^{(n)}| = \left[\frac{\varepsilon_m(\omega) - \varepsilon}{\varepsilon_m(\omega) + \varepsilon}\right]^{\frac{1}{2}\left(n - \left|\sin\frac{\pi n}{2}\right|\right)} \left[\frac{\varepsilon_{cr}(\omega) - \varepsilon}{\varepsilon_{cr}(\omega) + \varepsilon}\right]^{\frac{1}{2}\left(n + \left|\sin\frac{\pi n}{2}\right|\right)} |\mathbf{p}_D|. \tag{5}$$

Таким образом, из выражений (3)-(5) видно, что можно говорить о взаимной переполяризации проводящей и кристаллической сред. Учитывая коллективные возбужденные электронные состояния этих сред, и переходя на квантовый язык, отмечаем, что имеет место экситонплазмонное взаимодействие в составной гибридной системе. С ростом номера изображения расстояние z_n от исходного донорного диполя до диполя-изображения n-го порядка растет пропорционально номеру изображения: $z_n = nd$.

Следует отметить, что с увеличением расстояния от первичного диполя до границы раздела фаз, использование метода изображений в квазистатическом приближении будет давать все менее точный результат. Это связано с проявлением эффектов запаздывания, роль которых для пленок нанометровой толщины невелика.

Эффективное квазистатическое поле донорного диполя

Электрическое поле, формируемое в гибридной структуре донорным диполем с моментом \mathbf{p}_D , представляет собой линейную комбинацию полей, создаваемых как диполем донора, так и наведенными зарядами в металле и кристаллической среде.

Напряженность электрического поля в точке $\mathbf{r}(x,z)$ среды с проницаемостью $\varepsilon_{_{M}}(\omega)$, создаваемого диполем $\mathbf{p}_{\scriptscriptstyle M}^{\scriptscriptstyle (n)}$, расположенным на оси z с координатой $z_n = nd$ определяется выражением

$$\mathbf{E}_{M}^{(n)}(\mathbf{r}_{n} \mid \boldsymbol{\omega}) = \frac{3(\mathbf{p}_{M}^{(n)}(\boldsymbol{\omega}) \cdot \mathbf{r}_{n})\mathbf{r}_{n}}{\varepsilon_{M}(\boldsymbol{\omega}) \mid \mathbf{r}_{n} \mid^{5}} - \frac{\mathbf{p}_{M}^{(n)}(\boldsymbol{\omega})}{\varepsilon_{M}(\boldsymbol{\omega}) \mid \mathbf{r}_{n} \mid^{3}}, \quad (6)$$

где индекс M = m, cr определяет тип среды; $|\mathbf{r}_n| = \sqrt{x^2 + (z - nd)^2}$. Для поля $\mathbf{E}_D(\mathbf{r}_0 \mid \boldsymbol{\omega})$ донорного диполя с моментом \mathbf{p}_D необходимо положить в (6) $\varepsilon_{M}(\omega) = \varepsilon$.

Напряженность электрического поля в диэлектрической прослойке формируется в виде суперпозиции электрических полей, создаваемых исходным донорным диполем, а также всеми его изображениями, как в металле, так и в молекулярном кристалле

$$\begin{split} \mathbf{E}(\mathbf{r}\mid\boldsymbol{\omega}) &= \mathbf{E}_{\scriptscriptstyle D}(\mathbf{r}\mid\boldsymbol{\omega}) + \sum_{\scriptscriptstyle n=1}^{\infty} \Bigl[\mathbf{E}_{\scriptscriptstyle m}^{\scriptscriptstyle (n)}(\mathbf{r}_{\scriptscriptstyle n}\mid\boldsymbol{\omega}) + \mathbf{E}_{\scriptscriptstyle cr}^{\scriptscriptstyle (n)}(\mathbf{r}_{\scriptscriptstyle n}\mid\boldsymbol{\omega}) \Bigr] \, . \mbox{(7)} \\ &\text{Тогда напряженность электрического поля} \end{split}$$

в полупространстве, заполненном металлом

$$\mathbf{E}_{m}(\mathbf{r} \mid \boldsymbol{\omega}) = \frac{2\varepsilon_{m}(\boldsymbol{\omega})}{\varepsilon_{m}(\boldsymbol{\omega}) + \varepsilon} \left[\mathbf{E}_{D}(\mathbf{r} \mid \boldsymbol{\omega}) + \sum_{n=1}^{\infty} \mathbf{E}_{cr}^{(n)}(\mathbf{r}_{n} \mid \boldsymbol{\omega}) \right], (8)$$

а в полупространстве, заполненном кристаллической средой

$$\mathbf{E}_{cr}(\mathbf{r} \mid \omega) = \frac{2\varepsilon_{cr}(\omega)}{\varepsilon_{cr}(\omega) + \varepsilon} \left[\mathbf{E}_{D}(\mathbf{r} \mid \omega) + \sum_{n=1}^{\infty} \mathbf{E}_{m}^{(n)}(\mathbf{r}_{n} \mid \omega) \right] . (9)$$

Формулы (7)-(9) являются основными выражениями для определения скорости Wдонор-акцепторного переноса энергии в многослойной системе.

Скорость переноса энергии возбуждения от молекулы донора к акцептирующей сферической наночастице

Если акцептор представляет собой малую изотропную частицу (атом или проводящую наноглобулу), для нахождения скорости безызлучательного переноса энергии от донора к акцептору важную роль играет именно расчет модуля напряженности электрического поля, созданного диполем донора в области размещения акцепторной частицы.

Парциальная скорость безызлучательного переноса энергии от молекулы донора к наночастице на частоте ω может быть записана в виде

$$W(x,\varphi \mid d,\omega) = \frac{1}{2\hbar} \operatorname{Im} \alpha(\omega) \left| \mathbf{E}(\mathbf{r} \mid \omega) \right|^{2}, \quad (10)$$

где $\alpha(\omega)$ — дипольная (в общем случае — мультипольная) скалярная поляризуемость наночастицы, являющаяся комплекснозначной функцией частоты ω , а напряженность поля $\mathbf{E}(\mathbf{r} \mid \omega)$ определена выражениями (7)-(9).

Для сферической наночастицы радиуса Rиз материала с диэлектрической проницаемостью $\varepsilon_{A}(\omega)$ справедливо выражение [11-12]

$$\alpha(\omega) = \frac{\varepsilon_A(\omega) - \varepsilon}{\varepsilon_A(\omega) + 2\varepsilon} R^3. \tag{11}$$

Для слоистых сферических частиц вместо (11) может быть использовано и более общее выражение [11], учитывающее сложный структурный состав акцептирующей глобулы.

Расчеты модуля напряженности результирующего поля в слоистой среде на разных частотах

Для расчета характеристик поля в различных пространственных областях системы были использованы следующие значения ее параметров: $d = 5.10^{-7}$ см, $|\mathbf{p}_D| = 10^{-19}$ ед. заряда СГСЭ $\text{см}, \varphi = 90^{\circ} - \text{угол между осью } x$ и направлением вектора \mathbf{p}_D , $\varepsilon = 1.2$.

Частотная зависимость диэлектрической проницаемости металла выбиралась в форме Друде-Зоммерфельда [11-12]

$$\varepsilon_{m}(\omega) = \varepsilon_{\infty} - \frac{\omega_{pl}^{2}}{\omega^{2} + i\omega\gamma}, \qquad (12)$$

где постоянная ε_{∞} , учитывающая вклад решетки принималась равной $\varepsilon_{\scriptscriptstyle \infty}=3.7$, а частоты $\omega_{pl} = 13.9 \cdot 10^{15} \,\mathrm{c}^{-1}, \; \gamma = 10^{14} \,\mathrm{c}^{-1}$ типичны для серебpa [7].

Дисперсия диэлектрической проницаемости молекулярного кристалла используется в виде, учитывающем проявление в поглощении коллективных электронных возбуждений – экситонных мод кристалла [13]. Согласно [13] диэлектрическая проницаемость молекулярных кристаллов, обусловленная экситонами Френкеля, имеет вид

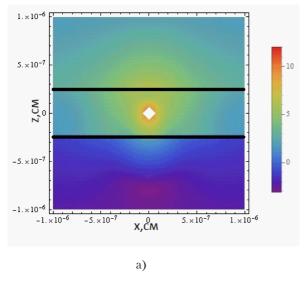
$$\varepsilon(\mathbf{k},\omega) = \varepsilon_0 - \frac{f^2}{\left[\omega + i\Gamma(\omega,\mathbf{k})\right]^2 - \Omega^2(\mathbf{k})}, \quad (13)$$

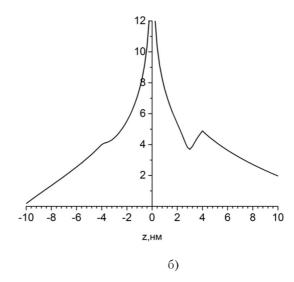
где ε_0 — диэлектрическая проницаемость, обусловленная всеми другими состояниями электронов, кроме экситонных состояний; $\Gamma(\omega,\mathbf{k})$ — скорость релаксации, обусловленная взаимодействием экситонов с фононами; $f^2 \equiv \Omega_p^2 F$ — характерный параметр связи фотонов с экситонами; $\Omega_p^2 \equiv 4\pi e^2/mv$ — квадрат «плазменной частоты»; $F \equiv 2\omega_f m d^2/\hbar e^2$ — сила осциллятора экситонного перехода; $\Omega(\mathbf{k})$ — частота в экситонной зоне с волновым вектором \mathbf{k} . Для расчетов использовались следующие значения параметров, характерные для органических молекулярных кристаллов:

$$f = 3.10^{15} \,\mathrm{C}^{-1}, \ \Gamma = 10^{14} \,\mathrm{C}^{-1}, \ \Omega(0) = 10^{15} \,\mathrm{C}^{-1} [13].$$

Таким образом, диэлектрическая проницаемость (13) молекулярного кристалла представляет собой комплекснозначную функцию, отражающую его пространственную и частотную дисперсию. Далее будет учитываться только частотная дисперсия середины экситонной зоны, т.е. при \mathbf{k} =0. Особенности пространственной дисперсии подробно рассмотрены в [14].

Для расчета характеристик поля был произведен учет только трех первых изображений, созданных диполем донора в каждой из сред.


Ниже, на рис. 2-4, представлены картины распределения модуля напряженности электрического поля на трех различных частотах (рис. 2-4).

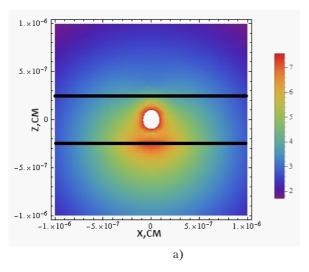

На Рис. 2 приведены двумерная (а) и одномерная (б) картина распределения напряженности поля на частоте $\omega = 2.5 \cdot 10^{15} \, \mathrm{c}^{-1}$, близкой к частоте экситонного резонанса кристаллической среды. Наблюдается заметное смещение поля в область, заполненную органической молекулярной средой.

Характерно, что в металл на этой частоте излучение диполя практически не проникает. Следовательно, в данных условиях — на низкочастотном участке спектра — органическая среда будет оказывать большее влияние на доноракцепторный перенос энергии, чем металлическая.

На рисунке 3 показано распределение напряженности квазистатического поля диполя для частоты $\omega = 6.5 \cdot 10^{15} \, \mathrm{c}^{-1}$, близкой к частоте поверхностного плазмоного резонанса (ППР) металла. На этот раз наблюдается смещение плотности распределения поля в область, заполненную металлом. То есть на высоких частотах проводящая среда оказывает большее влияние на перенос энергии, нежели кристаллическая.

Аналогичные расчеты распределения поля были проведены и для частоты $\omega = 9.1 \cdot 10^{15} \, \mathrm{c}^{-1}$ (промежуточной между плазменной частотой и частотой ППР металла). На этой частоте заметного смещения плотности распределения поля

Рисунок 2 (С включением цвета). Распределение модуля напряженности электрического поля в трехслойной структуре на частоте $\omega = 2.5 \cdot 10^{15} \, \mathrm{c}^{-1}$: а) при y=0, б) при x=y=0. Для рис. 2а использован логарифмический масштаб цветной шкалы


в ту или иную среду вне среднего слоя не наблюдалось (Рис. 4). В этих условиях существенного влияния на перенос энергии двух разных по свойствам сопряженных с диэлектрическим слоем сред не обнаружено. Таким образом, следует ожидать сильную зависимость влияния граничащих сред на межмолекулярную передачу возбуждения от спектрального диапазона электромагнитного поля.

Расчет скорости безызлучательной передачи энергии от донора к акцептору

Скорость безызлучательного переноса энергии от молекулы донора к наночастице на

фиксированной частоте ω определяется выражениями (10)-(11). В качестве ключевой характеристики в (10) входит квадрат модуля вектора напряженности электрического поля, созданного диполем донора в области слоя, где расположена и частица-акцептор.

Для расчета поляризуемости металлической частицы радиуса R=3 нм, с диэлектрической проницаемостью $\varepsilon_{\scriptscriptstyle A}(\omega)$, определенной выражением (12), использовались следующие значения параметров: $\varepsilon_{\scriptscriptstyle \infty}=1$, $\omega_{\scriptscriptstyle pl}=10^{16}~{\rm c}^{-1}$, $\gamma=5\cdot10^{14}~{\rm c}^{-1}$, соответствующих Fe, толщина диэлектрической пленки принималась при этом равной d=8 нм. Для простоты предполагалось, что и донор, и акцептор находятся в пленке на

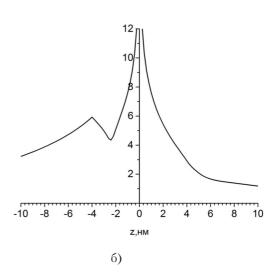


Рисунок 3 (С включением цвета). Распределение модуля напряженности электрического поля в трехслойной структуре на частоте $\omega = 6.5 \cdot 10^{15} \, \mathrm{c}^{-1}$: а) при y=0, б) при x=y=0. Для рис. **За** использован логарифмический масштаб цветной шкалы.

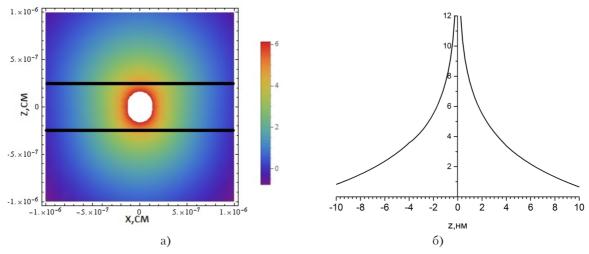
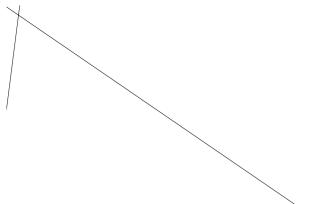


Рисунок 4 (С включением цвета). Распределение модуля напряженности электрического поля в трехслойной структуре на частоте $\omega = 9.1 \cdot 10^{15} \, \mathrm{c}^{-1}$, превышающей все характерные резонансные частоты системы: а) при y=0, б) при x=y=0. Для рис. **4а** использован логарифмический масштаб цветной шкалы

одном уровне z=0, т.е. лежат на оси x (рис. 1). Полученные для различных условий на основе (10) частотные зависимости скорости безызлучательного переноса энергии от донора к акцептору (металлическому наношару) представлены на рисунках 5-8.

На Рис. 5 отчетливо проявляются спектральные максимумы, каждый из которых связан с резонансными свойствами сред и акцепторной частицы. Так, низкочастотный пик на частоте $\omega_{res}^{exc} = \left[\Omega^2(0) + f^2/(\varepsilon_0 + \varepsilon)\right]^{1/2}$ обусловлен экситонным резонансом поверхностного слоя молекулярного кристалла, а высокочастотный, на частоте $\omega_{res}^{sp} = \omega_{nl} / \sqrt{\varepsilon_{\infty} + \varepsilon} -$ поверхностным плазмонным резонансом в металлической подложке. Широкий промежуточный пик на частоте $\omega_{res}^{A} = 5.77 \cdot 10^{15} \,\mathrm{c}^{-1}$, отвечает плазмонному резонансу акцепторной частицы, т.е. $\omega_{res}^{A} = \omega_{pl}^{A} / \sqrt{3}$. Таким образом, высокочастотный – правый – пик спектра скорости Wна частоте $\omega_{res}^{sp} = 6.27 \cdot 10^{15} \, \mathrm{c}^{-1}$ в большей степени соответствует переносу от донора к акцептору через металл, а левый, на частоте $\omega_{res}^{exc} = 2.26 \cdot 10^{15} \,\mathrm{c}^{-1}$ - через органическую среду. При малых расстояниях между донором и акцептором существенным становится «прямой перенос энергии». При увеличении же расстояния *l*, его вклад в общую скорость переноса падает, однако становится более значимым опосредованный перенос энергии через одну из сред на резонансных частотах матриц-подложек.


При изменении угла φ между направлением диполя донора и осью x наиболее существен-

ной трансформации подвергается пик на частоте поверхностно-плазмонного резонанса металла подложки. На плазмоном резонансе акцепторной частицы ориентация донорного диполя сказывается в гораздо меньшей степени. В области пика, отвечающему переносу энергии через органическую среду зависимость от этого углового параметра обратная. Сложная угловая зависимость скорости переноса ее прямой связью с характеристиками диполей-изображений.

На Рис. 6 показаны спектральные трансформации скорости переноса энергии, наблюдаемые с изменением толщины внутреннего диэлектрического слоя. Расчеты для скорости переноса проводились при следующих значениях параметров: $\varphi = 45^{\circ}$, $R = 3 \cdot 10^{-7}$, $l = 7.10^{-7}$ см. Как и следовало ожидать, при увеличении расстояния от молекулы до границы раздела фаз, эффективность опосредованного переноса энергии через среду падает. В частотной зависимости наблюдается исчезновение пиков влияния металла и молекулярного кристалла, а скорость перенос энергии от донора к акцептору по прямому каналу практически не изменяется.

При увеличении радиуса R акцептирующей наночастицы скорость переноса увеличивается пропорционально кубу радиуса в соответствии с формулой (11) для всех частот спектра скорости W.

На Рис. 7 приведены результаты расчета спектров скорости переноса энергии при изме-

Рис. 5. (С включением цвета). Частотные зависимости скорости переноса для различных расстояний x=l между донором и акцептором (на врезке). Полулогарифмический масштаб по оси ординат

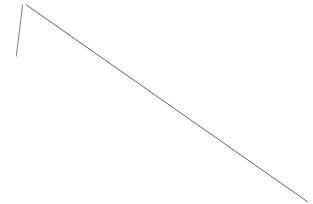
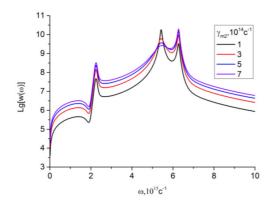
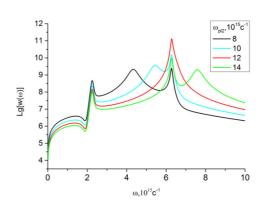




Рис. 6. (С включением цвета). Трансформация частотной зависимости логарифма скорости доноракцепторного переноса энергии при изменении толщины диэлектрической пленки (указаны на врезке)

Рис. 7. (С включением цвета). Трансформация частотной зависимости скорости переноса энергии при изменении релаксационного коэффициента $\gamma_m^A = \gamma_{m2}$ металла наночастицы (указаны на врезке)

Рис. 8. (С включением цвета). Трансформация частотной зависимости скорости переноса энергии при изменении плазменной частоты $\omega_{pl}^A = \omega_{pl2}$ металла наночастицы (указаны на врезке)

нении коэффициента диссипации γ_m^A металла наночастицы. Использовались следующие значения параметров: $\varphi=45^\circ$, $R=3.9\cdot10^{-7}$, $d=8\cdot10^{-7}$, $l=7\cdot10^{-7}$ см. С уменьшением величины γ_m^A металла наночастицы происходит сужение ее характерного плазмонно-резонансного пика. Ширины полос, отвечающих экситонному и поверхностно-плазмонному резонансам кристаллической и проводящей сред, соответственно, остаются неизменными. На частоте плазмонного резонанса наночастицы происходит увеличение скорости переноса за счет ее величины на всех других частотах спектра, включая и резонансные частоты подложек.

На Рис. 8 представлены частотные зависимости логарифма скорости переноса энергии от молекулы донора к металлической наночастице при изменении плазменной частоты ω_{pl}^A металла, из которого состоит частица. Для расчетов были использованы следующие значения параметров: $\varphi=45^\circ$, $R=3\cdot 10^{-7}$, $d=8\cdot 10^{-7}$

 $l=7\cdot 10^{-7}$ см, $\gamma_m^A=5\cdot 10^{14}$ с⁻¹. При увеличении частоты ω_{pl}^A происходит смещение плазмонно-резонансного пика наночастицы в высокочастотную область спектра. При значении плазменной частоты $\omega_{pl}^A=6.2\cdot 10^{15}\,$ с⁻¹ этот пик накладывается на другой — пик ППР, т.е. возникает перекрестный плазмон-плазмонный резонанс, который приводит к увеличению скорости переноса для данной частоты примерно на два порядка.

Таким образом, на основании вышеприведенных результатов можем заключить, что скорость безызлучательного переноса энергии в тонких пленках, граничащих с проводящей и кристаллической средами, существенно зависит от характеристик этих сред. Выбирая материалы с необходимыми спектрально-электродинамическими параметрами можно осуществлять эффективный контроль энергодинамических характеристик композитных планарных систем при их использовании в прикладных областях.

Работа выполнена при финансовой поддержке РФФИ и правительства Оренбургской области (проект № 14-02-97000), а также Министерства образования и науки РФ (Госзадание № 233)

Авторы благодарны И.С. Муравьеву за помощь в проведении расчетов.

Список литературы:

^{1.} Ефремов, Н.А. Диполь-дипольный перенос энергии электронного возбуждения в неоднородных средах / Н.А. Ефремов, С.И. Покутний // Физика твердого тела. 1993. -Т. 35. - №5. -С. 1129-1140.

- 2. Agranovich, V.M. Efficient energy transfer from a semiconductor quantum well to an organic material / V.M. Agranovich, G.C. La Rocca, F. Bassani // Pis"ma v ZhETF. – 1997. – Vol.66. - iss.11. – P. 714-717.
- $3.\ Basco, D.\ Forster\ energy\ transfer\ from\ a\ semiconductor\ quantum\ well\ to\ an\ organic\ material\ overlayer\ /\ D.\ Basco,\ G.C.\ La\ Rocca,$ F. Bassani, V.M. Agranovich // Eur. Phys. J. – 1999. – B. 8. – P. 353-362.
- $4. Strokova, Y.A. \ Electronic \ energy \ transfer \ from \ a \ semiconductor quantum \ well \ lying \ on \ a \ metallic \ substrate \ to \ an \ organic \ overlayer$ / Y.A. Strokova, A.M. Saletsky, M.G. Kucherenko // Russian-Japanese Conference «Chemical Physics of Molecules and Polyfunctional Materials»: Proceedings. 2014. – OSU, Orenburg, Russia / IPK «Universitet», 2014. – P. 16-18.
- 5. Кучеренко, М.Г. Экситонная передача энергии между адсорбатами / М.Г Кучеренко., Т.М. Чмерева // Физика твердого тела. 2008. -Т.50. -№3. - С. 512-518.
- 6. Чмерева, Т.М. Межмолекулярный безызлучательный перенос энергии электронного возбуждения вблизи проводящей пленки / Т.М Чмерева., М.Г. Кучеренко // Известия высших учебных заведений. Физика. 2014. -Т. 57. -№ 10. -С. 116-
- 7. Чмерева, Т.М, Передача энергии между адсорбатами посредством поверхностных плазмонов / Т.М. Чмерева, М.Г. Кучеренко // Известия высших учебных заведений. Физика. 2011. -№ 3. – С. 36-41.
- 8. Кучеренко, М.Г. Увеличение скорости межмолекулярного безызлучательного переноса энергии электронного возбуждения вблизи плоской границы твердого тела / М.Г. Кучеренко, Т.М. Чмерева, Д.А. Кислов // Вестник ОГУ. 2011. №1. С.
- 9. Кислов, Д. А. Безызлучательный триплет-синглетный перенос энергии электронного возбуждения между молекулами красителей вблизи поверхности серебряной пленки / Д. А. Кислов, М. Г. Кучеренко // Оптика и спектроскопия. 2014. -T. 117. - № 5. - C. 809–816.
- 10. Кособукин, В.А. Плазмон-экситонное рассеяние света наночастицей, находящейся вблизи квантовой ямы / В.А. Кособукин // Физика тв. тела. 2015. -Т. 57. - Вып. 7. - С. 1413-1419.
- 11. Климов, В.В. Наноплазмоника. Монография / В.В. Климов М.: Физматлит. 2009. 480 с. ISBN 978-5-9221-1030-3.
- 12. Новотный, Л. Основы нанооптики. Монография / Л. Новотный, Б. Хехт -Пер. с англ. Под ред. В.В. Самарцева. М..Физматлит. 2009. -484 с. -ISBN 978-5-9221-1095-2.
- 13. Давыдов, А.С. Теория твердого тела / А.С. Давыдов. М.: Наука, 1976 328 с. 14. Агранович, В.М. Пространственная дисперсия и отрицательное преломление света / В.М. Агранович, Ю.Н. Гартштейн // Успехи физических наук. – 2006. - T.176. - №10. - C. 1051-1068.

Сведения об авторах

Кучеренко Михаил Геннадьевич, директор Центра лазерной и информационной биофизики Оренбургского государственного университета, заведующий кафедрой радиофизики и электроники Оренбургского государственного университета, доктор физико-математических наук, профессор 460018, Оренбург, пр-т Победы, 13, тел.: (3532) 372457, e-mail: rphys@mail.osu.ru

Чмерева Татьяна Михайловна, доцент кафедры радиофизики и электроники Оренбургского госдарственного университета, доктор физико-математических наук, доцент 460018, Оренбург, пр-т Победы, 13, к. 16508, тел. (3532) 364653, 372457, e-mail: clibf@mail.osu.ru