Сарайкин А.И., Аралбаев Т.З., Хасанов Р.И.

Оренбургский государственный университет E-mail: saraikin a@yandex.ru

ПОЗИЦИОНИРОВАНИЕ МОБИЛЬНОГО ОБЪЕКТА НА ДОРОЖНОМ ПОЛОТНЕ В УСЛОВИЯХ ДЕФИЦИТА ИНФОРМАЦИИ

Неадекватная оценка водителем влияния значения дефицита информации при выборе траектории и скорости движения мобильного объекта значительно увеличивает риск возникновения дорожно-транспортных происшествий. Одним из основных принципов повышения активной безопасности мобильного объекта является использование навигационных методов и средств информационной поддержки водителей при позиционировании мобильного объекта на дорожном полотне. Для реализации этой задачи разработан экспериментальный вариант бортовой системы позиционирования – прототип системы, который включает следующие функциональные модули: сбора, регистрации и обработки данных о траектории движения мобильного объекта, выбора скоростного режима и угла поворота мобильного объекта в условиях дефицита информации. Прототип бортовой системы был апробирован на потенциально опасных участках дорожного полотна, на основе чего разработаны рекомендации по выбору безопасного коридора движения мобильного объекта в условиях дефицита информации. Полученный результат свидетельствует об адекватности данных по выбору направления угла поворота мобильного объекта рекомендуемых бортовой системой позиционирования и действиями водителя. Разработанный метод в виде алгоритма и средства позволяет снизить риск возникновения дорожно-транспортных происшествий вне населенных пунктов в условиях визуального дефицита информации.

Ключевые слова: дефицит визуальной информации, информационная поддержка водителя, активная безопасность мобильного объекта.

Потенциально опасные участки дорожного полотна (ДП) и условия недостаточной видимости являются основной причиной дорожно-транспортных происшествий (ДТП), возникающих вне населенных пунктов [5, 6]. Неадекватная оценка водителем влияния значения дефицита информации при выборе траектории и скорости движения МО значительно увеличивает риск возникновения ДТП. В настоящее время одним из основных принципов повышения активной безопасности МО является использование навигационных методов и средств информационной поддержки водителей при позиционировании МО на ДП. Особую актуальность данная задача имеет для нашей страны, поскольку сложная сеть автомобильных дорог, протянутых на местности со сложным постоянно меняющимся рельефом, с различными эксплуатационными характеристиками, зависящими от погодных условий, времени года, параметров транспортных средств и перевозимых грузов.

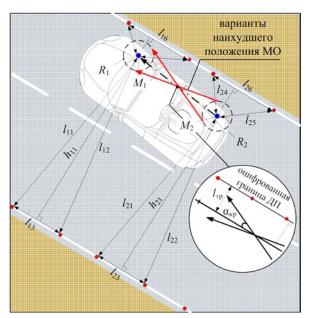
Под дефицитом информации в работе понимается недостаток сведений для принятия решений при позиционировании МО на ДП при наличии ограничений передвижения, обусловленных линиями разметки ДП или какими-либо стационарными препятствиями искусственного или природного происхождения [1, 13, 14].

Под позиционированием МО понимают определение положения (ориентации) МО относительно оцифрованных границ ДП в результате выбора угла поворота и скорости МО в процессе его движения [13, 14].

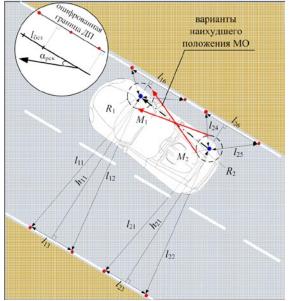
Проблеме исследования и разработки методов и средств повышения активной безопасности автомобилей уделено большое внимание в современной научно-технической, периодической, патентной литературе и в источниках сети Интернет [9, 10, 11, 15, 16]. Среди работ по данной тематике следует отметить разработки учёных и инженеров научно-производственных, академических и вузовских организаций: ГНЦ РФ ФГУП «НАМИ» и НИЦИАМТ ФГУП «НАМИ» (проект «Беспилотный автомобиль»); ВолгГТУ (школа профессоров А.А. Ревина, И.В. Ходеса, Е.В. Балакиной), посвященные повышению устойчивости и управляемости автомобилей, информационной поддержке водителей, антиблокировочным и тормозным системам, компьютерному контролю безопасных скоростных режимов автомобилей; МГТУ им. Баумана (труды профессора Г.О. Котиева), посвященные проектированию колесных и гусеничных машин, в том числе роботизированных; труды сотрудников МАДИ, АлтГТУ и ФГУП «НИИЭФА», посвященные системам оцифровки и позиционирования МО на ДП с использованием средств спутниковой навигации (ССН) «ГЛОНАСС/GPS» [7, 8], интегральных датчиков магнитного поля.

Анализ современных публикаций показал, что, несмотря на значительные достижения в области методологии построения систем активной безопасности МО, существующие системы позиционирования транспортных средств в условиях дефицита информации имеют следующие недостатки:

- не достаточно информативны и оперативны при отсутствии видимости границ ДП и дорожной разметки, при возникновении сложных погодных условий, нестандартной разметки на поворотах малого радиуса;
- отсутствует интеграция в одной системе модулей для оцифровки границ ДП по маршруту следования МО, позиционирования, визуализации и обмена полученной информацией между участниками МО;
- имеют высокую стоимость (от 400 тыс. руб. до 3,5 млн. руб.).


Объект исследования — режим позиционирования МО на ДП в условиях дефицита информации. Предмет исследования — навигационные методы и средства ВТ для позиционирования МО на ДП в условиях дефицита информации.

Целью работы является повышение активной безопасности МО в условиях дефицита ин-


формации на основе новых методов и средств информационной поддержки водителей при позиционировании МО относительно оцифрованных границ ДП. Для достижения поставленной цели были определены следующие задачи:

- разработка метода позиционирования МО и экспериментального варианта БСП прототипа системы;
- проведение натурных экспериментов на потенциально опасных участках ДП и разработка рекомендаций по выбору безопасного коридора движения МО в условиях дефицита информации.

Анализ факторов, влияющих на эффективность решения задачи позиционирования МО на ДП в условиях недостаточной видимости показал, что для её решения необходима сложная система информационной поддержки, включающая в себя подсистемы сбора и регистрации навигационных данных о траектории движения МО, оценки погрешности позиционирования МО, исследования и выбора скоростных режимов МО на различных графических примитивах оцифрованных участков дорог, определения ориентации МО относительно оцифрованных границ ДП, базы данных оцифрованных границ ДП, подсистемы прогнозирования траектории движения МО и выбора угла поворота МО, визуализации рекомендаций для водителя MO[2-4, 12].

(a) – определение угла наихудшего положения МО на ДП $a_{\mbox{\tiny sp}}$ с учётом погрешностей ССН

(б) — выбор угла поворота рулевого колеса $a_{_{\mathrm{pek}}}$ для дальнейшего безопасного движения на расстояние $l_{_{\mathrm{fex}}}$

Рисунок 1. Схемы позиционирования МО на ДП в условиях дефицита информации

На рисунках 1(a-6) представлены схемы позиционирования МО в условиях дефицита информации относительно оцифрованных границ ДП.

На рисунке точки M_1 и M_2 обозначают местоположения антенн подсистемы спутниковой навигации «ГЛОНАСС/GPS». Окружности R_1 и R_2 — радиусы погрешностей ССН. Расстояния $l_{11}-l_{26}$ обозначают длины между оцифрованными координатами границ ДП и местоположением антенн ССН, установленных на кузове МО. Расстояния до оцифрованных границ ДП $h_{11}-h_{22}$ вычисляются в алгоритме программы по формуле Герона. Штрихпунктирная линия M_1M_2 обозначает ориентацию МО относительно оцифрованных границ ДП.

В бортовой системе МО задается дискретность получения навигационных данных и погрешность средств спутниковой навигации — R_1 и R_2 . Система в автоматическом режиме осуществляет определение угла наихудшего положения МО на ДП $a_{\rm m}$ с учётом погрешностей ССН.

В процессе эксплуатации МО по показаниям бортовой системы осуществляется выбор рекомендуемого системой угла поворота МО $a_{\rm pek}$ для дальнейшего безопасного движения на расстояние $l_{\rm feq}$.

Прототип бортовой системы позиционирования МО на ДП в условиях дефицита информации был апробирован в условиях, приближенных к реальным. В качестве мобильного объекта было выбрано легковое транспортное средство «ВАЗ-21140».

На рисунке 2 изображена схема позиционирования МО на участке 707 км автомобильной трассы P-314

Натурные эксперименты проводились на различных участках дорог Оренбургской области, в частности: на автодроме ОГУ; на участке 707-705 км автомобильной трассы P-314; на участке 8-10 км автомобильной трассы P-295.

На рисунке 3 изображена зависимость Δ от погрешности навигационного оборудования, где Δ — разность между действиями водителя и рекомендациями системы, выражена в градусах.

В процессе исследования участок дороги автомобильной трассы P-314 был разбит на две части: прямолинейный участок протяженностью 1183 метра и кольцевой участок протяженностью 650 метров.

В таблице 1 представлен фрагмент регистрируемых параметров системой позиционирования MO.

Перечень представленных параметров в таблице позволяет оценить следующие характеристики МО: скорость и ускорение МО, координаты место положения, поперечные и продольные углы ДП, собственные углы поворота МО относительно оцифрованной границы дорожной разметки, рекомендуемые углы поворота, расстояние от МО до оцифрованной границы дорожной разметки.

Анализ результатов исследований позволил сделать следующие выводы:

– при движении МО по прямолинейному участку действия водителя по выбору направления угла поворота в 78,12% совпадали с рекомендациями бортовой системы позиционирования МО на протяжении 924,15 метров; в 21,88% случаях водитель игнорировал реко-

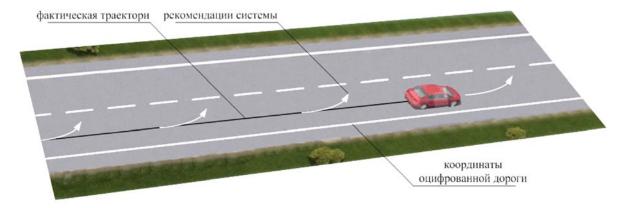


Рисунок 2. Схема позиционирования МО на участке 707 км автомобильной трассы Р-314

	(град, мин, сек)	Долгота МО (град, мин, сек)			Пройденный путь МО по GPS	Высота МО по GPS, м.	Угол наклона МО прод., град.	Угол наклона МО попер., град.	Угол поворота МО (собств.), град.	Угол поворота МО (реком.), град.	Расстояние от правой границы ДП, метр.	
Прямолинейный участок												
51	53	9,944	55	3	48,80	1,7	106,1	-0,06641	1,230469	0,467	13,699	0,217
51	53	9,901	55	3	48,75	3,4	106,1	-0,37109	1,507813	0,368	26,15	0,227
51	53	9,857	55	3	48,69	5,1	105,9	7,621094	-0,14844	3,311	29,093	0,254
51	53	9,773	55	3	48,59	8,5	105,6	1,898438	1,230469	4,618	30,4	0,213
51	53	9,773	55	3	48,59	8,5	105,4	4,128906	1,09375	1,572	15,253	0,213
51	53	9,729	55	3	48,53	10,2	105,6	1,601563	0,539063	0,033	25,815	0,213
Кольцевой участок												
51	53	14,016	55	3	53,87	1,7	104,5	2,347656	1,09375	2,606	9,925	2,692
51	53	13,974	55	3	53,81	5,2	105,4	-0,67578	1,921875	0,097	12,892	2,666
51	53	13,932	55	3	53,76	7,0	105,9	-0,37109	2,476563	0,164	6,722	2,666
51	53	13,89	55	3	53,71	8,7	106,1	-8,49219	4,285156	0,755	13,774	2,666
51	53	13,847	55	3	53,66	10,4	106,7	-2,24587	1,75249	-20	-32,91	3,678
51	53	13.805	55	3	53.60	15.8	105.5	1.45721	1.05874	-12.447	-25.585	3.678

Таблица 1. Фрагмент регистрируемых параметров системой позиционирования МО

мендации бортовой системы на протяжении 258,85 метров.

– при движении МО по кольцевому участку действия водителя по выбору направления угла поворота в 71,3% совпадали с рекомендациями бортовой системы позиционирования МО на протяжении 463,45 метров; в 28,7% случаях водитель игнорировал рекомендации бортовой системы на протяжении 186,55 метров.

Полученные результаты свидетельствуют об адекватности данных по выбору направления угла поворота МО рекомендуемых БСП и действиями водителя.

Разработанный метод позволяет снизить риск возникновения ДТП, вне населенных пунктов в

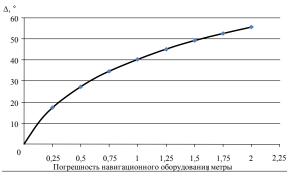


Рисунок 3. График зависимости между погрешностью ССН и разностью между действиями водителя и рекомендациями системы

условиях дефицита информации за счет оперативной информационной поддержки водителя.

14.03.2015

Список литературы:

^{1.} Аралбаев, Т.З. Бортовая система оцифровки траектории движения автомобиля с использованием средств спутниковой навигации / Т.З. Аралбаев, А.И. Сарайкин, Р.И. Хасанов // Вестник Оренбургского государственного университета. – 2014. – № 10. – С. 8 – 14.

^{2.} Аралбаев, Т.3. Исследование и выбор скоростного режима мобильного объекта в условиях дефицита информации: materials of the X International scientific and practical conference «Trends of modern science» / Т.3. Аралбаев, А.И. Сарайкин, Р.И. Хасанов. – Sheffield: Science and education LTD, 2014. – Vol. 26. – Р. 48 – 52.

^{3.} Аралбаев, Т.3. Определение положения мобильного объекта на дорожном полотне в условиях плохой видимости: сб. докл. одиннадцатой международной научно-технической конференции «Прогрессивные технологии в транспортных системах» / Т.3. Аралбаев, Р.И. Хасанов, А.И. Сарайкин. – Оренбург: ОГУ, 2013. – С. 37 – 43.

Аралбаев, Т.З. Система оцифровки траектории движения мобильного объекта с использованием средств спутниковой навигации: материалы VI всероссийской научно-практической конференции "Компьютерная интеграция производства и ИПИтехнологии" / Т.З. Аралбаев, А.И. Сарайкин, Р.И. Хасанов. – Оренбург: ОГУ, 2013. – С. 96 – 100.

Транспорт

- 5. Аралбаев, Т.З. Управление скоростным режимом автомобиля на основе средств оперативной оценки состояния дорожного полотна: монография / Т.З. Аралбаев, Р.И. Хасанов. Уфа: АН РБ, Издательство «Гилем», 2012. 148 с.
- 6. ГОСТ Р 52399-2005 Геометрические элементы автомобильных дорог. М.: Стандартинформ, 2006. 13 с.
- 7. ГОСТ Р 55524-2013. Глобальная навигационная спутниковая система. Системы навигационно-информационные. Термины и определения. М.: Стандартинформ, 2014. 4 С.
- 8. ГОСТ Р 56048-2014. Глобальная навигационная спутниковая система. Система экстренного реагирования при авариях. Общие положения. М.: Стандартинформ, 2014. 8 С.
- 9. Патент №2161317 Российская Федерация, МПК G01S 5/14 Система высокоточного определения местоположения объектовпотребителей навигационной информации по навигационным радиосигналам с санкционированным доступом в режиме дифференциальных поправок / Виноградов А.А., Дворкин В.В., Союзов М.В., Урличич Ю.М.; заявитель и патентообладатель : 3AO "НПО Космического приборостроения": опубл. 27.12.2000.
- : ЗАО "НПО Космического приборостроения"; опубл. 27.12.2000.

 10. Патент №2241958 Российская Федерация, МПК G01C 21/00, G05D1 1/00 Способ (варианты) и следящая система для определения положения и ориентации подвижного объекта / Амосков В.М., Белов А.В., Беляков В.А. и др.; заявитель и патентообладатель : ФГУП "НИИ электрофизической аппаратуры им. Д.В. Ефремова"; №2003134667/28; заявл. 02.12.2003; опубл. 10.12.2004, Бюл. №16. 20 с.
- 11. Патент №2288451 Российская Федерация, МПК G01C 21/00 Способ определения положения мобильной машины при движении / Павлюк А.С., Павлюк С.А., Ашихмин Д.В.; заявитель и патентообладатель: Алтайский государственный технический университет им. И.И. Ползунова; №2004138625/28; заявл. 28.12.2004; опубл. 27.11.2006, Бюл. №33. 6 с. 12. Сарайкин, А.И. Метод позиционирования мобильного объекта в условиях неопределенности на основе принятия решения
- 12. Сарайкин, А.И. Метод позиционирования мобильного объекта в условиях неопределенности на основе принятия решения по принципу наихудшего варианта: материалы XI всероссийской научно-практической конференции «Современные информационные технологии в науке, образовании и практике» / А.И. Сарайкин, Р.И. Хасанов, Т.З. Аралбаев. Оренбург: ООО ИПК «Университет», 2014. С. 173 177.
- 13. Хасанов, Р.Й. Инструментальная база для исследования режима позиционирования мобильного объекта в условиях дефицита информации / Р.И. Хасанов, А.И. Сарайкин, Т.З. Аралбаев // Журнал автомобильных инженеров. 2014. № 6. С. 42 45.
- 14. Хасанов, Р.И. Инструментальная база для исследования режима позиционирования мобильного объекта в условиях дефицита информации / Р.И. Хасанов, А.И. Сарайкин, Т.З. Аралбаев // Журнал автомобильных инженеров. 2015. № 1. С. 5 9.
- 15. The patent № 6415229 United States, DE 14 24 412 A1 1/1996, DE 44 23 328 A1 1/1996 System for position determination of mobile objects, in particular vehicles / Norbert Diekhans; applicant and patent holder: Claas KGaA.; decl. 23.06.1997; publ. 02.07.2002. –11 p.
- 16. Ting, S.L. The Study on Using Passive RFID Tags for Indoor Positioning / S.L. Ting, S.K. Kwok, Albert H.C. Tsang and George T.S. Ho // Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University. −2011 − № 1. − P. 9 − 15.

Сведения об авторах:

Сарайкин Александр Иванович, аспирант кафедры вычислительной техники и защиты информации факультета информационных технологий Оренбургского государственного университета, e-mail: saraikin_a@yandex.ru

Аралбаев Ташбулат Захарович, заведующий кафедрой вычислительной техники и защиты информации факультета информационных технологий Оренбургского государственного университета, доктор технических наук, профессор, e-mail: atz1953@gmail.com

Хасанов Рафаэль Илдарович, старший преподаватель кафедры вычислительной техники и защиты информации факультета информационных технологий Оренбургского государственного университета, кандидат технических наук, e-mail: hasanov0401@yandex.ru

460000, г. Оренбург, Шарлыкское шоссе, 5, ауд. 14133