Паштаев Н.П.^{1,2,3}, Поздеева Н.А.^{1,2}, Унишкова Л.И.¹

¹Чебоксарский филиал МНТК «Микрохирургия глаза» им. акад. С.Н. Федорова ²Институт усовершенствования врачей Министерства здравоохранения и социального развития Чувашской Республики ³Чувашский государственный университет имени И.Н. Ульянова E-mail: liana.unishkova@mail.ru

АНАЛИЗ ИЗМЕНЕНИЙ АББЕРАЦИЙ ОПТИЧЕСКОЙ СИСТЕМЫ ГЛАЗА ПОСЛЕ ФЕМТОСЕКУНДНОЙ ИНТРАСТРОМАЛЬНОЙ ИМПЛАНТАЦИИ КОЛЬЦА MYORING У ПАЦИЕНТОВ С МИОПИЕЙ ВЫСОКОЙ СТЕПЕНИ В СОЧЕТАНИИ С ТОНКОЙ ТОЛЩИНОЙ РОГОВИЦЫ

Анализ изменений аббераций оптической системы глаза после фемтосекундной интрастромальной имплантации кольца Myoring у пациентов с миопией высокой степени в сочетании с тонкой толщиной роговицы.

Фемтосекундная интрастромальная имплантация кольца Myoring проводилась на 43 глазах (у 24 пациентов) в возрасте от 24 до 45 лет (в среднем $34,5\pm3$ года) с миопией высокой степени в сочетании с тонкой толщиной роговицы. Абберометрическую картину глаза изучали на абберометре (Visionix L80 WAVE+, Израиль) до и через 3 месяца после фемтосекундной интрастромальной имплантации кольца Myoring. Значение сферического компонента рефракции составило от -9,25 до -17,5 дптр (в среднем $-13,4\pm1,4$ дптр), цилиндрического от -1,0 до -4,0 дптр (в среднем $-2,5\pm1,2$ дптр). Минимальное значение пахиметрии в центре составило от 430 до 498 мкм (в среднем 464 ± 20 мкм). Среднее значение кератометрии -44,50 дптр. Оценивали уровень аббераций низшего и высшего порядка. Из аббераций высшего порядка проанализировали сферическую абберацию и абберации типа Кома.

Представлен анализ изменений аббераций оптической системы глаза после фемтосекундной интрастромальной имплантации кольца MyoRing у пациентов с миопией высокой степени в сочетании с тонкой толщиной роговицы. В результате имплантации MyoRing некорригированная острота зрения (КОЗ) увеличилась в 8 раз, корригированная острота зрения (КОЗ) в 1,5 раза, сферический компонент уменьшился в 8,5 раз, цилиндрический – в 2 раза непосредственно после операции. Через 3 месяца после операции НКОЗ возросла еще в среднем на 0,13±0,01, КОЗ практически не изменилась. Анализ результатов свидетельствует о высокой рефракционной эффективности данного метода, уменьшении аббераций низшего порядка и увеличения аббераций высшего порядка

Таким образом, анализ изменений аббераций оптической системы глаза после фемтосекундной интрастромальной имплантации кольца Myoring у пациентов с тонкими роговицами на сроке наблюдения 3 месяца показал уменьшение аббераций низшего порядка и увеличение аббераций высшего порядка.

Ключевые слова: миопия, интрастромальное кольцо Myoring, фемтосекундный лазер, аберрации высшего и низшего порядка.

Несмотря на значительный темп развития и совершенствования кераторефракционных технологий, проблема наличия аббераций, связанных с изменением профиля роговицы, остается актуальной.

Операционное вмешательство на роговице меняет форму ее поверхности и вследствие этого приводит к возникновению аббераций высшего порядка, а значит к снижению качества зрения пациента [1]–[6], [10].

В 2007 году А. Даксер предложил коррекцию миопии высокой степени методом имплантации миоринга, полного кругового кольца из полиметилметакрилата, в стромальный карман, сформированный с помощью микрокератома PocketMaker [12]–[15]. Формирование кармана возможно с помощью фемтосекундного лазера,

так как при этом нарушение архитектуры стромы роговицы минимально [7]–[9], [11].

Данная технология так же, как и все кераторефракционные операции меняет профиль роговицы.

В связи с этим представляется актуальным проведение анализа изменений абберометрической карты у пациентов после фемтосекундной интрастромальной имплантации кольца Myoring.

Цель

Анализ изменений аббераций оптической системы глаза после фемтосекундной интрастромальной имплантации кольца Myoring у пациентов с миопией высокой степени в сочетании с тонкой толщиной роговицы.

Материал и методы

Фемтосекундная интрастромальная имплантация кольца Myoring проводилась на 43 глазах (у 24 пациентов) в возрасте от 24 до 45 лет (в среднем 34,5±3 года) с миопией высокой степени в сочетании с тонкой толщиной роговицы. Значение сферического компонента рефракции составило от -9,25 до -17,5 дптр (в среднем — 13,4±1,4 дптр), цилиндрического — от -1,0 до -4,0 дптр (в среднем — 2,5±1,2 дптр). Минимальное значение пахиметрии в центре составило от 430 до 498 мкм (в среднем 464±20 мкм). Среднее значение кератометрии — 44,50 дптр.

Имплантацию интрастромальных колец проводили под местной инстилляционной анестезией. Первым этапом формировали роговичный карман диаметром до 9 мм, шириной входа 5–6 мм преимущественно с латеральной стороны с помощью фемтосекундного лазера «IntraLase FS» 60 кГц на глубину из расчета 80 % от исходной толщины роговицы.

В сформированный карман специальным пинцетом вводили MyoRing диаметром от 5 до 6 мм и высотой от 280 до 320 мкм. Центрацию кольца проводили относительно зрительной оси глаза пациента.

Абберометрическую картину глаза изучали на абберометре (Visionix L80 WAVE+, Израиль) до и через 3 месяца после фемтосекундной интрастромальной имплантации кольца Myoring.

Оценивали уровень аббераций низшего и высшего порядка. Из аббераций высшего порядка проанализировали сферическую аббе-

рацию и абберации типа Кома. При биомикроскопии оптические среды во всех глазах были прозрачные. Обработка статистических данных проводилась с помощью программы «Statistica 6.1» (программный продукт «StatSoft», США). Рассчитывали среднее арифметическое, ошибку среднего арифметического ($M \pm SD$).

Результаты и обсуждения

В результате имплантации MyoRing некорригированная острота зрения (НКОЗ) увеличилась в 8 раз, корригированная острота зрения (КОЗ) — в 1,5 раза, сферический компонент уменьшился в 8,5 раз, цилиндрический — в 2 раза непосредственно после операции.

Через 3 месяца после операции НКОЗ возросла еще в среднем на 0,13±0,01, КОЗ практически не изменилась. Отмечается уменьшение показателей аббераций низшего порядка (табл. 1).

Таблица 1. Динамика роговичных аберраций низшего порядка до и после фемтосекундной интрастромальной имплантации MyoRing у пациентов с миопией высокой степени в сочетании с тонкой толщиной роговицы в условиях циклоплегии, дптр (M ± SD), N=43

Показатели	До операции	После операции
		через 3 мес
1	40 (+ 4 (05/ 10/
sph	$13,4 \pm 1,4$	0.54 ± 0.4
cyl	$2,5 \pm 1,2$	$0,09 \pm 0,3$

Результаты оценки данных аберрометрии при проведении операции фемтосекундной имплантации кольца MyoRing с использовани-

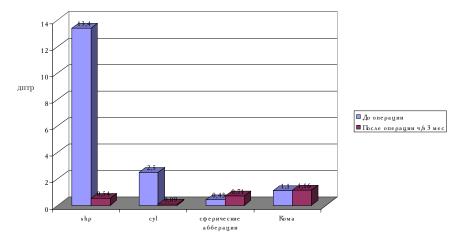


Рисунок 1. Динамика роговичных аберраций низшего и высшего порядка в условиях циклоплегии до и после фемтосекундной интрастромальной имплантации MyoRing (M±SD)

Таблица 2. Динамика роговичных аберраций высшего порядка до и после фемтосекундной интрастромальной имплантации MyoRing у пациентов с миопией высокой степени в сочетании с тонкой толщиной роговицы, дптр ($M \pm SD$), N=43

Показатели	Зрачок 3,5 мм		Зрачок 6,0 мм	
	До операции	После операции ч/з 3 мес	До операции	После операции ч/з 3 мес
Сферические аберрации	0.39 ± 0.04	0.18 ± 0.05	$0,43 \pm 0,05$	0.71 ± 0.09
Аберрации типа Кома	0.27 ± 0.05	$0,28 \pm 0,10$	$1,1 \pm 0,05$	$1,16 \pm 0,06$

ем фемтосекундного лазера свидетельствуют о том, что происходит возрастание сферических аберраций и аберраций Кома как при узком, так и при широком зрачке (табл. 2).

Абберации высшего порядка в условиях циклоплегии превышают таковые при узком зрачке. Динамика роговичных аббераций про-иллюстрирована на рисунке 1.

Выводы

Таким образом, анализ изменений аббераций оптической системы глаза после фемтосекундной интрастромальной имплантации кольца Myoring у пациентов с тонкими роговицами на сроке наблюдения 3 месяца показал уменьшение аббераций низшего порядка и увеличение аббераций высшего порядка.

10.09.2015

Список литературы:

- Аветисов С.Э. Современные подходы к коррекции рефракционных нарушений // Вестник офтальмологии. –2006. № 1. С. 3-8.
- 2. Алиев А-Г.Д., Исмаилов М.И. Клиническая классификация аббераций оптической системы глаза человека // Офтальмолог. Стран Причерноморья: Сб. науч тр. Краснсодар,2006. С.365-371.
- 3. Балашевич Л.И. Рефракционная хирургия. СПб.: Изд. Дом СПбМАПО, 2002. С.285.
- 4. Балашевич Л.И., Качанов А.Б. Клиническая корнеотопография и абберометрия // Под ред. проф. Л.И.Балашевича. М., 2008. С.167.
- 5. Дога А.В., Кишкин Ю.И., Майчук Н.В. Коррекция «сверхвысокой» миопии методом ФемтоЛАСИК // Современные технологии катарактальной и рефракционной хирургии 2011: сб. науч. ст. М, 2011. С. 227-231.
- 6. Костин О.А., Ребриков С.В., Овчинников А.Й. и др. Изменение абберации кома при коррекции миопии методом стандартного LASIK // Современные технологии катарактальной и рефракционной хирургии 2009: сб. науч. ст. М, 2009. С. 310-312.
- 7. Куликова И.Л., Паштаев Н.П. Первые результаты коррекции аметропии с использованием фемтосекундного кератома // Клиническая офтальмология. 2008. № 3. С. 87-90.
- Маслова Н.А., Паштаев Н.П. Отдаленные клинико-функциональные результаты после инрастромальной кератопластики с применением фемтосекундного лазера IntraLase FS у пациентов с кератоконусом // Офтальмохирургия. – 2011. – № 1. – С. 10-14.
- 9. Маслова Н.А., Сусликов С.В. Формирование интрастромальных роговичных тоннелей для имплантации роговичных сегментов у пациентов с кератоконусом с помощью фемтосекундного лазера IntraLase FS // Бюл. СО РАМН. − 2009. № 4. С. 75-79.
- 10. Мороз З.И., Тахчиди Х.П., Калинников Ю.Ю., Ковшун Е.В., Борзенок С.А. Современные аспекты кератопластики. Новые технологии в лечении заболеваний роговицы. Всероссийская научно-практическая конференция: материалы. М., 2004. С. 280.287
- 11. Нероев В.В., Оганесян О.Г., Пенкина А.В., Ханджян А.Т. Результаты имплантации интрастромальных роговичных сегментов с использованием фемтосекундного хирургического лазера FEMTO LDV пациентам с кератоконусом II-III стадии // Сборник научных трудов III Российского общенационального офтальмологического форума. М., 2010. Том 1. С. 137-141.
- 12. Паштаев Н.П., Поздеева Н.А., Синицын М.В., Шленская О.В. Коррекция миопии высокой степени в сочетании с тонкой роговицей методом фемтолазерной интрастромальной имплантации кольца MyoRing // Катарактальная и рефракционная хирургия. 2013. № 4. С. 26-29.
- 13. Daxer A. Corneal intrastromal implantation surgery for the treatment of moderate and high myopia // J. Cataract Refract. Surg. 2008. Vol. 34, №2. P.194 198.
- 14. Daxer A., Alio L., Pinero P. Clinical outcomes after complete ring implantation in corneal ectasia sing the femtosecond technology // Ophthlmology. 2011. Vol. 118. №7. P. 1282-1290.
- 15. Miller J.M., Anwaruddin R., Straub J. et al. Higher order aberration in normal, dilated, intraocular lens, and laser in situ keratomileusis corneas // J. Refact. Surg. . − 2002. − Vol. 18, №5. − P.579 − 583.

Сведения об авторах:

Паштаев Николай Петрович, заведующий кафедрой офтальмологии Института усовершенствования врачей, директор Чебоксарского филиала МНТК «Микрохирургия глаза» им. акад. С.Н.Федорова,

доктор медицинских наук, профессор

Поздеева Надежда Александровна, заместитель директора по научной работе Чебоксарского филиала МНТК «Микрохирургия глаза» им. акад. С.Н.Федорова, доктор медицинских наук

Унишкова Лиана Ивановна, врач-офтальмолог Чебоксарского филиала МНТК «Микрохирургия глаза» им. акад. С.Н.Федорова 428028, г. Чебоксары, пр-т Тракторостроителей, 10, e-mail:liana.unishkova@mail.ru