Бажина Н.Л.¹, Ондар Е.Э.², Очур К.О.¹, Дергачева М.И.^{1,3}

¹Институт почвоведения и агрохимии СО РАН, г. Новосибирск E-mail: natasha-bazhina@mail.ru, E-mail: mid555@yandex.ru, E-mail: kseniya_ochur@mail.ru

²Тувинский государственный университет, г. Кызыл E-mail: elenondar@mail.ru

³Национальный исследовательский Томский государственный университет

СОСТАВ ГУМУСА ГОРНО-ТУНДРОВЫХ ПОЧВ ЗАПАДНОЙ ЧАСТИ ТУВЫ

Показаны особенности состава гумуса горно-тундровых почв в зависимости от положения по отношению к леднику, сформированные в разных экологических условиях западной части Тувы.

Ключевые слова: состав гумуса, горно-тундровые почвы, экологические условия формирования, западная часть Тувы.

Как известно, гумус, являющийся одним из важных компонентов почвы, обладает свойствами сенсорности и рефлекторности составляет «память» почвы [1]. Согласно М.И. Дергачевой [2], гумус представляет собой открытую природную систему гумусовых веществ, которая формируется по законам термодинамики и способна к саморегуляции и самовосстановлению. Система гумусовых веществ отображает особенности развития почвы под действием природных условий в момент их формирования, и соотношение ее компонентов позволяет фиксировать стадии развития почв и экологические условия их образования [3]. В то же время гуминовые кислоты, как один из компонентов гумуса, имеют аккумулятивный характер, в силу чего они не мигрируют в пределах профиля и в ландшафте, а накапливаются на месте своего образования [4].

В настоящее время имеется ограниченное число материалов по характеристике состава гумуса и гумусовых профилей почв западных районов Тувы [5]-[7], но ни в одной из работ не представлен анализ состава гумуса почв юго-западной части Тувы, которая отличается суровым климатом и разнообразием сочетанием экологических условий развития почв. Одним из районов этой территории является горный массив Монгун-Тайга, где преобладают мало изученные горно-тундровые почвы, распространенные под разной тундровой растительностью, на разных элементах геоморфологического профиля, на склонах разной экспозиции. Для того чтобы представить все разнообразие горно-тундровых почв были заложены ключевые участки Монгун-Тайга I и II, которые, согласно В.А. Носину [8], относятся к Монгун-Тайгинскому высокогорному тундроволугово-степному округу Монгун-Тайгинскому району. Они расположены в самой крайней юго-западной части Тувы, являющейся орографическим узлом на стыке горных систем Алтая, Западного Саяна и Западного Тану-Ола.

На горном массиве Монгун-Тайга преобладают альпийские формы рельефа, также отмечается современное оледенение и повсеместно распространены следы предыдущего обширного оледенения в виде наличия морен. Растительность и почвы соответствуют высокогорным условиям формирования. Здесь на высотах 2800–3000 м преобладают каменистые травянисто-лишайниково-дриадовые горные тундры со слаборазвитыми почвами, тогда как на высоте 2400–2800 м широко распространены травянисто-мохово-кустарниковые тундры с перегнойными или дерновыми горно-тундровыми почвами [9].

По природным условиям массив Монгун-Тайга отличается резко континентальным климатом, продолжительной холодной зимой (средняя температура января достигает -29... -37 °C) и очень коротким холодным летом (средняя температура июля колеблется в пределах +10...0 °C). Среднегодовая температура воздуха составляет -4...-6 °C, сумма t > 10 °C не достигает 800 °.

Для этой территории характерны сильные ветры (которые наблюдаются с конца марта до середины ноября), а также, несмотря на небольшое количество осадков, высокая степень увлажнения из-за меньшей испаряемости влаги в условиях пониженной температуры воздуха,

что обусловливает обилие влаги и заболоченность пояса высокогорья [10].

Изученные горно-тундровые почвы на ключевом участке Монгун-Тайга-I на склоне северо-восточной экспозиции представлены разрезами 1—5, сформированными под лишайниково-кобрезиево-дриадовой тундрой, на склоне северо-западной экспозиции — разрезами 6—9 под травянисто-мохово-кустарниковой тундрой. Ключевой участок Монгун-Тайга-II отличается от предыдущего более высокими

абсолютными *отметками над уровнем моря* и близким расположением к леднику. На этом участке было заложено 3 почвенных разреза на склоне северной экспозиции, вскрывающих слаборазвитые горно-тундровые почвы, сформированные на участках каменистой травянисто-лишайниково-дриадовой растительности.

В целом, ключевые участки характеризуются суровым климатом, присущим для высокогорий. Различие условий их развития обуслов-

Таблица 1. Состав гумуса горно-тундровых почв горного массива Монгун-Тайга

Положение	Глубина,	Собщ.	∑гк	ГК І	LK II	ГК III	∑фк	ФК 1а	Сгк:Сфк
по катене	СМ	Соощ.		% к ∑гк			∠4 ^r	% к ∑фк	этк.сфк
				Монгун-Т					
				еро-восточ		1			T
1, Эль	0-2	12,49	20,12	60,04	9,19	30,77	29,93	6,88	0,67
	2-6	4,46	19,83	45,94	23,20	30,86	30,09	7,24	0,66
2, Транс 1	0-2	8,33	23,91	61,23	11,13	27,65	28,42	7,60	0,84
	2-6	6,94	14,46	54,98	14,80	30,29	37,06	6,66	0,39
3, Транс 2	0–5	6,66	18,41	40,19	24,61	35,25	27,62	7,93	0,67
4, Транс 3	0-2	13,20	22,93	46,14	24,68	29,21	22,49	8,18	1,02
	2-6	9,30	20,28	44,42	23,77	31,76	25,09	9,49	0,81
	6-10	7,72	17,63	14,58	60,24	25,18	26,95	11,02	0,65
5, Ак	0-2	6,47	22,51	36,87	27,54	35,58	31,07	7,24	0,72
	2-6	6,12	22,04	20,96	43,92	35,07	31,20	7,05	0,71
			Склон сев	еро-запад	ной экспо	зиции	,		
6, Эль	0-2	11,09	21,90	38,22	20,59	41,19	31,68	7,51	0,69
	2-6	8,71	20,83	39,99	17,47	42,53	32,28	8,40	0,65
	6-10	8,66	19,18	42,80	14,18	43,01	29,10	9,07	0,66
7, Транс 1	0-5	12,06	27,47	28,90	41,03	30,07	25,97	45,36	1,06
	5-10	11,76	22,55	34,19	30,64	35,17	30,12	36,22	0,75
	10-17	8,06	21,32	31,24	35,46	33,35	30,13	31,43	0,71
8,Транс 2	0-3	7,77	19,14	35,16	32,45	32,39	28,46	32,47	0,67
	3-6	3,70	14,95	44,55	15,65	39,73	28,49	31,38	0,52
9, Ак	0-5	8,99	29,60	43,65	19,86	36,48	32,51	7,35	0,91
	5-10	7,45	28,01	44,48	22,38	33,13	30,68	7,82	0,91
	10-15	6,15	25,53	45,79	25,97	28,24	31,02	8,80	0,82
	15-20	5,87	25,49	44,64	27,11	28,25	30,44	7,82	0,84
	20-25	5,59	24,32	44,86	30,26	24,88	31,54	7,70	0,77
	25-31	3,05	19,21	55,65	13,33	30,97	35,61	10,19	0,54
	31-36	2,84	18,28	55,96	14,61	29,43	36,40	10,74	0,50
	36-41	2,43	17,21	48,23	20,86	30,91	37,12	9,91	0,46
	41-46	0,95	14,88	43,82	27,02	29,17	35,47	19,59	0,42
	46-51	0,96	12,59	48,77	31,53	19,70	29,03	21,60	0,43
	1			Монгун-Та		,		,	
				северной		ИИ			_
1, Эль	0–3	0,95	13,4	48,51	11,94	39,55	33,6	9,82	0,40
	3–15	0,72	9,3	34,41	22,58	43,01	25,8	11,63	0,36
	15–31	0,31	8,7	32,18	28,74	39,08	26,3	19,01	0,33
2, Транс 1	0–8	2,98	22,0	29,54	25,91	44,54	34,6	8,38	0,64
	8–20	0,81	20,1	21,39	38,31	40,30	40,3	17,12	0,50
3, Транс 2	0-12	5,03	24,4	43,85	25,50	31,15	37,1	6,74	0,66
	12–22	1,67	17,2	28,49	30,81	40,70	31,4	8,28	0,55
	12 22	1,07	1 , ,2	20,17	20,01	10,70	J 1, 1	0,20	1 0,55

ливается положением по отношению к леднику, абсолютной высотой местности и экспозицией склонов.

Для анализа почвенные образцы отбирались подробной сплошной колонкой по 5–10 см и меньше в пределах видимых границ горизонтов. Такой отбор образцов позволяет аналитическими методами более детально, чем это делалось ранее, выявить особенности состава гумуса изученных почв.

Состав гумуса изучался по методике Пономаревой-Плотниковой в модификации 1968 г.

Слаборазвитые горно-тундровые почвы ключевого участка Монгун-Тайга-I, расположенные на склоне северо-восточной экспозиции и сформированные под лишайниково-кобрезиево-дриадовой растительностью, имеют небольшую мощность почвенного профиля. Они отличаются высоким содержанием общего органического углерода ($C_{\text{обш.}}$), которое колеблется от 13,2 до 4,5% (табл. 1).

В этих почвах отмечается невысокая доля гуминовых кислот, которая лежит в пределах 14–24%. Среди гуминовых кислот преобладают бурые их формы, количество которых в некоторых разрезах достигает почти половину от содержания этого компонента, а также ГК фракции 3, которая в большинстве случаев превышает 30% от суммы ГК. Доля фульвокислот преобладает в составе гумуса над гуминовыми кислотами, составляет 22–37% (содержание их увеличивается книзу), в связи с этим величина $C_{r\kappa}$: $C_{\phi\kappa}$ колеблется в среднем в пределах 0,4–0,8. Тип гумуса во в большинстве почв — гуматнофульватный и только в единичных случаях может быть отнесен к фульватному типу.

На склоне северо-западной экспозиции горно-тундровые почвы под травянисто-мохово-кустарниковой растительностью, как и предыдущие разрезы этого ключевого участка, имеют небольшую мощность, за исключением расположенных в аккумулятивной позиции, Они характеризуются высоким содержанием Собщ., которое постепенно снижается вниз по профилю в среднем от 12% до 4%.

Общее содержание гуминовых кислот в составе гумуса превышает 14%, составляя не более 30% от $C_{\text{общ}}$. Среди них преобладают бурые фракции, в большинстве случаев достигаю-

щие половины от их общего содержания, и как в предыдущем случае количество ГК фракции 3 высоко и превышает 30%. Фульвокислоты преобладают в составе гумуса. Подвижные их формы (фр. 1а), как это типично для всех тундровых почв, постепенно накапливаются в нижних горизонтах профиля. Тип гумуса — гуматно-фульватный.

В целом, горно-тундровые почвы, развитые на склонах разной экспозиции в пределах одного ключевого участка, отличаются повышенным содержанием общего органического углерода, преобладанием фульвокислот над гуминовым кислотами и гуматно-фульватным типом гумуса. Величина $C_{r\kappa}$: $C_{\phi\kappa}$ составляет, как правило, 0,4—0,9, только в единичных случаях превышая единицу.

Горно-тундровые почвы, вскрытые разрезами 1СК–3СК, имеют мощность почвенного профиля не более 30 см и различаются положением по отношению к леднику. Почва разреза 1СК приурочена к верхней части геоморфологического профиля, имеет очень низкое содержание $C_{\text{общ}}$. (не превышающее 1%) и гуминовых кислот (8–13%). Среди последних преобладают ГК фракций 1 и 3 (табл. 1).

В разрезе наблюдается уменьшение по профилю общего количества фульвокислот, в которых доля фк. 1а в этом направлении увеличивается. Гумус относится к фульватному типу: C_{rx} : $C_{\phi k}$ не превышает 0,4.

В отличие от описанного выше разреза, горно-тундровые почвы этого ключевого участка, расположенные в транзитной позиции геоморфологического профиля, отличаются высоким содержанием $C_{\text{общ}}$. В верхнем горизонте (3–5%), более высокой долей в гумусе гуминовых кислот, и, что особенно важно отметить, высокую долю среди гуминовых кислот третей их фракции и значительным преобладанием в составе гумуса фульвокислот. Тип гумуса — фульватный.

Рассматриваемые горно-тундровые почвы последнего ключевого участка, в отличие от первого, характеризуются меньшими величинами содержания общего органического углерода, но высокими долями фульвокислот в составе гумуса, что свойственно почвам, находящимся относительно близко к леднику и формирующимся при длительном влиянии мерзлоты.

Таким образом, горно-тундровые почвы западной части Тувы в зависимости от положения к леднику имеют различия в составе гумуса,

которые проявляются в общем содержании последнего, соотношении компонентов гуминовых кислот к фульвокислотам, и типе гумуса.

11.09.2015

Работа выполнена при финансовой поддержке РФФИ: Грант 14-04-32354 мол а

Список литературы:

1. Дергачева М.Й. Гумусовая память почв // Память почв: Почва как память биосферно_геосферно_антропосферных взаимодействий – М.: Изд_во ЛКИ, 2008. – С. 530–560.

2. Дергачева М.И. Система гумусовых веществ почв. – Новосибирск: Наука, Сиб. отд-ние., 1989. – 110 с.

3. Дергачева М.И. Органическое вещество почв: статика и динамика. – Новосибирск: Наука, Сиб. отд-ние., 1984. – 155 с.

4. Дергачева М.И. Археологическое почвоведение. – Новосибирск: Изд-во СО РАН, 1997. – 228 с.

5. Ондар Е.Э., Бажина Н.Л. Гумусовые профили некоторых почв Алашского нагорья (Западная Тува) // Материалы XI Убсунурского международного симпозиума «Экосистемы Центральной Азии: исследования, сохранение, рациональное использование». – Кызыл: РИО Тувинского государственного университета, 2012. – С. 168–171.

6. Каллас Е.В., Быкова М.А. Гумус почв Западно-Тувинской котловины // Отражение био-, гео-, антропосферных взаимодействий в почвах и почвенном покрове: сборник материалов V Международной научной конференции, посвященной 85-летию кафедры почвоведения и экологии почв ТГУ (7–11 сентября 2015 г., Томск, Россия). – Томск: Издательский Дом Томского государственного университета, 2015. – С. 14–20.

7. Быкова М.А., Каллас Е.В., Соловьева Т. п. Современное состояние сухостепных почв Западно-Тувинской котловины // Отражение био-, гео-, антропосферных взаимодействий в почвах и почвенном покрове: сборник материалов V Международной научной конференции, посвященной 85-летию кафедры почвоведения и экологии почв ТГУ (7–11 сентября 2015 г., Томск, Россия). – Томск: Издательский Дом Томского государственного университета, 2015. – С. 41–44.

8. Носин В.А. Почвы Тувы. – М.: Изд-во АН СССР, 1963. – 342 c

9. Петров Б.Ф. Почвы Алтае-Саянской области. М., 1952 а. – 247 с.

10. Ефимцев Н.А. Климатический очерк // Природные условия Тувинской автономной области. М.: Изд-во АН СССР, 1957.

Сведения об авторах:

Бажина Наталья Леонидовна, младший научный сотрудник Института Почвоведения и Агрохимии СО РАН; специальность почвоведение — 03.02.13

630090 г. Новосибирск, проспект Академика Лаврентьева, 8/2, тел.: (383) 363-90-18, e-mail: bazhina-natasha@mail.ru

Очур Ксения Олеговна, научный сотрудник Института Почвоведения и Агрохимии СО РАН; кандидат биологических наук, специальность почвоведение — 03.02.13 630090 г. Новосибирск, проспект Академика Лаврентьева, 8/2, тел.: (383) 363-90-18, e-mail: kseniya_ochur@mail.ru

Ондар Елена Эрес-ооловна, доцент кафедры общей биологии Тувинского государственного университета; кандидат биологических наук, специальность почвоведение — 03.02.13 667000 г. Кызыл, ул. Ленина, 36, тел.: 8(39422) 2-43-11, e-mail: elenondar@mail.ru

Дергачева Мария Ивановна, главный научный сотрудник Института Почвоведения и Агрохимии СО РАН, профессор кафедры почвоведения и экологии почв Томского государственного университета, доктор биологических наук, профессор, специальность почвоведение — 03.02.13 630090 г. Новосибирск, проспект Академика Лаврентьева, д. 8/2, тел.: (383)222-54-15, e-mail: mid555@yandex.com