Хардикова С.В., Верхошенцева Ю.П., Тихонова М.А.,* Мурсалимова Г.Р.,* Иванова Е.А.,* Турмухамбетова А.С.

Оренбургский государственный университет *Оренбургская опытная станция садоводства и виноградарства E-mail: hard-sveta@yandex.ru

ЭКОЛОГО-ФИЗИОЛОГИЧЕСКИЕ АСПЕКТЫ ВЛИЯНИЯ ГУМИНОВЫХ ПРЕПАРАТОВ НА РОСТ И РАЗВИТИЕ САЖЕНЦЕВ ВИНОГРАДА ИЗ УКОРОЧЕННЫХ ЧЕРЕНКОВ

В статье приведены результаты исследований по влиянию гуминовых препаратов на рост и развитие саженцев винограда из укороченных черенков.

Объектом исследования послужили саженцы винограда сортов Русский ранний и Агат Донской. Из гуминовых препаратов применяли: органо-минеральное удобрение гумат калия «Суфлер» и комплексное удобрение на основе гумата калия с макро- и микроэлементами. Раз в 10 дней проводили полив саженцев растворами данных препаратов. Всего за экспериментальный период произвели 6 поливов. Полив саженцев водой осуществлялся по мере необходимости. Повторность опыта 3-х кратная, по 100 саженцев в каждом варианте. В контрольном варианте саженцы поливали водой.

Исследования показали, что внесение гуминовых препаратов оказало положительное влияние на процессы формирования, как корневой системы, так и наземной части саженцев винограда из укороченных черенков, выращенных в природно-климатических условиях Южного Урала. под влиянием гуминовых препаратов у опытных растений отмечено увеличение следующих показателей: количество корней первого и второго порядков; длина и диаметр корня; длина и диаметр побега; количество листьев на побеге; площадь листовой пластинки. Наибольший эффект получен от полива гуминовым препаратом на основе гумата кальция с макро- и микроэлементами. Это обусловлено тем, что данное удобрение помимо гумата калия содержит еще комплекс необходимых растению макро- и микроэлементов.

Проведенный опыт показывает, что применение гуминовых препаратов при ускоренном размножении винограда в условиях Южного Урала существенно повышает качество посадочного материала.

Ключевые слова: саженцы, виноград, сорт, гуминовые препараты, корень, побег, площадь листовой поверхности, Южный Урал.

В виноградарстве для быстрого размножения сортов широко применяют укороченные, двух – трехглазковые, одревесневшие черенки, нарезаемые из хорошо вызревших побегов. Это позволяет повысить коэффициент размножения винограда в 2-3 раза. Однако многолетний опыт выращивания саженцев из укороченных черенков в природно-климатических условиях Южного Урала показывает, что не всегда удается получить качественный посадочный материал. В первую очередь, это обусловлено тем, что вегетационный период на Южном Урале короче на 1-1,5 месяца, чем нужно для нормального развития винограда, в результате в побегах количество запасных питательных веществ, необходимых для роста и развития саженцев, откладывается сравнительно меньше, чем у растений выращенных в южных региона [1]-[3].

Повысить выход и улучшить качество саженцев при ускоренном размножении винограда можно за счет внесения гуминовых препаратов. Гуминовые препараты представляют собой высоко концентрированную смесь био-

логически активных веществ, выделенных из экологически чистого сырья природного происхождения. под влиянием, которых в клетках растений изменяется проницаемость клеточных мембран, повышается активность ферментов и скорость физиологических и биохимических процессов. Являясь неспецифическими активаторами иммунной системы, гуматы повышают устойчивость растений к различным заболеваниям. Кроме того, они стимулируют развитие корневой системы. Регулируют корневое и внекорневое питание. Улучшают проникновение питательных веществ из почвенного раствора в растение [4]—[6].

В связи с этим на базе Оренбургской опытной станции садоводства и виноградарства были проведены исследования по изучению влияния гуминовых препаратов на рост и развитие саженцев винограда из укороченных черенков. Объектом исследования послужили саженцы винограда сортов Русский ранний и Агат Донской. Из гуминовых препаратов использовали: органо-минеральное удобрение гумат калия

«Суфлер» и комплексное удобрение на основе гумата калия с макро- и микроэлементами.

После кильчевания черенки высадили в специальные вазоны в теплице. Раз в 10 дней проводили полив саженцев растворами гуминовых препаратов. Концентрацию растворов гуминовых удобрений определяли согласно инструкциям к ним. Всего произвели 6 поливов растворами гуматов. Полив саженцев водой осуществлялся по мере необходимости. Повторность опыта 3-х кратная, по 100 саженцев в каждом варианте. В контрольном варианте саженцы поливали водой.

Результаты исследований показали, что гуминовые удобрения оказали большое влияние на процесс формирования корневой системы саженцев винограда. под действием гуматов произошло значительное увеличение количества корней первого и второго порядков. Внесение гумата калия «Суфлер» способствовало увеличению числа корней на 7 штук у саженцев сорта Русский ранний и на 9 – у сорта Агат Дон-

ской, по сравнению с контролем. Наилучший результат получен при поливе саженцев раствором гумата калия с макро- и микроэлементами. В данном варианте количество корней увеличилось на 17 и 15 штук, соответственно. Также наблюдается разница в линейных размерах корней по вариантам опыта (табл. 1). Наиболее мощная корневая система саженцев винограда сформировалась при поливе гуматом калия с макро- и микроэлементами.

Гуминовые препараты оказали существенное влияние и на формирование надземных органов саженцев винограда. Данные таблицы 2 показывают, что длина побега саженцев сорта Русский ранний варьировала в пределах 2,0—4,5 см, а сорта Агат Донской — 3,8—6,8 см. Полив гуминовыми препаратами способствовал значительному увеличению показателя средней длины побега саженцев обоих сортов винограда по сравнению с контрольным вариантом. Максимальная длина побега отмечается в варианте с гуматом калия с макро- и микроэ-

	and the second s		
Тоблицо 1 Плицо	THE THE PARTY OF T	TIONITIO ON IT THE OCUMEOR	TO DOMINOUTOM OFFICE
таолина г. длина г	и диаметр корней саженцев	изучасмых соотов	по вариантам опыта

	Русский ранний		Агат Донской	
Варианты опыта	Средняя длина	Средний диаметр	Средняя длина	Средний диаметр
	корня, см	корня, см	корня, см	корня, см
Контроль	7,4±0,7	0,12±0,02	8,5±0,6	0,16±0,03
Гумат калия «Суфлер»	10,8±1,1	0,12±0,03	9,2±0,8	0,16±0,02
Гумат калия с макро- и микроэлементами	12,0±0,9	0,16±0,01	11,3±1,2	0,18±0,04

Таблица 2. Длина и диаметр побегов саженцев винограда изучаемых сортов по вариантам опыта

	Русский ранний		Агат Донской	
Варианты опыта	Средняя длина	Средний диаметр	Средняя длина	Средний диаметр
	побега, см	побега, см	побега, см	побега, см
Контроль	2,0±0,3	0,2±0,05	3,8±0,4	0,4±0,02
Гумат калия «Суфлер»	3,5±0,5	0,3±0,07	5,7±0,5	$0,4\pm0,07$
Гумат калия с макро- и микроэлементами	4,5±0,2	0,4±0,1	6,8±0,1	0,5±0,04

Таблица 3. Количество листьев и площадь листовой пластинки саженцев винограда изучаемых сортов по вариантам опыта

	Русский ранний		Агат Донской	
Варианты опыта	Количество	Средняя площадь	Количество	Средняя площадь
	листьев на побеге,	листовой	листьев на побеге,	листовой
	ШТ	пластинки, см ²	ШТ	пластинки, см ²
Контроль	6	12,1	6	22,3
Гумат калия «Суфлер»	4	17,6	7	28,6
Гумат калия с макро-	7	16,5	7	47,5
и микроэлементами	/	10,3	/	41,3

лементами. У сорта Русский ранний в этом варианте длина побега увеличилась на 2,5 см, а у сорта Агат Донской — на 3,0 см по сравнению с контролем.

А вот показатели диаметра побега под действием гуминовых удобрений изменились незначительно.

Для нормального роста и развития растений большое значение имеет площадь листовой поверхности. Лист — один из основных органов растения, выполняющий жизненно важные функции: фотосинтез, транспирация, газообмен с окружающей средой. Поэтому при выращивании саженцев следует уделять большое внимание процессу формирования листьев. В силу закономерностей корреляции, формирование большей листовой поверхности будет способствовать формированию более мощной корневой системы.

Полученные данные показали, что в контроле у саженцев обоих сортов за экспериментальный период сформировалось одинаковое количество листьев на побеге — 6 штук (табл. 3). Полив гуминовыми удобрениями саженцев сорта Агат Донской способствовал как увеличе-

нию числа листьев на побеге, так и площади листовой поверхности, относительно контроля. А вот у сорта Русский ранний полученные данные неоднозначны.

В варианте с гуматом с макро- и микроэлементами число листьев увеличилось, а в варианте с гуминовым препаратом «Суфлер» наоборот, уменьшилось по сравнению с контролем. Но при этом площадь листовой поверхности в данных образцах сильно превышает показатели в других вариантах опыта.

Таким образом, внесение гуминовых препаратов оказало положительное влияние на процессы формирования, как корневой системы, так и наземной части саженцев винограда из укороченных черенков, выращенных в природно-климатических условиях Южного Урала. Наибольший эффект получен от полива гуминовым препаратом на основе гумата кальция с макро— и микроэлементами. Проведенный опыт показывает, что применение гуминовых препаратов при ускоренном размножении винограда в условиях Южного Урала существенно повышает качество посадочного материала.

12.09.2015

Список литературы:

Сведения об авторах:

Хардикова Светлана Владимировна, доцент кафедры общей биологии Оренбургского государственного университета, кандидат биологических наук, 03.00.16 — Экология, 03.02.01 — Ботаника 460018, г. Оренбург, пр-т Победы, 13, тел.: 8(3532)372483, e-mail: Hard-sveta@yandex.ru

Верхошенцева Юлия Петровна, доцент кафедры общей биологии

Оренбургского государственного университета, кандидат биологических наук, 03.00.16 – Экология 460018, г. Оренбург, пр-т Победы, 13, тел. 8(3532)372483; e-mail: yverkhoshentseva@mail.ru

Тихонова Марина Александровна, старший научный сотрудник Оренбургской опытной станции садоводства и виноградарства, кандидат биологических наук, 03.02.01 – Ботаника, 460018, г. 460041 г. Оренбург, пос. Ростоши, п/о Овощевод, тел./ факс: (3532) 47-27-34, 47-30-42, e-mail: binogradnik@yandex.ru

Никифорова Т.Г. Виноград на Южном Урале / Т.Г. Никифорова, С.В. Хардикова // Садоводство и виноградарство. 2006. – №6. – с 21-22

^{2.} Хардикова С.В. Влияние гуматов на ризогенез одревесневших черенков винограда выращенных в условиях степного Предуралья / С.В. Хардикова, М.А. Тихонова, С.Ю. Колодина // Плодоводство и ягодоводство России: Сб. науч. работ / ГНУ ВСТИСП Россельхозакадемии. — М., 2012. — Т.ХХХ. — с 104—111

^{3.} Хардикова С.В. Влияние гуминовых препаратов на корнеобразование и укоренение черенков винограда в условиях Южного Урала / С.В. Хардикова, Ю.П. Верхошенцева // Вестник Оренбургского государственного университета. — 2013. — №10 (159). — С. 230-232.

^{4.} Богословский, В.Н. Агротехнологии будущего. Книга І. Энергены / В.Н. Богословский, Б.В. Левинский, В.Г. Сычев. — М.: Издательство РИФ «Антиква» 2004. — 164 с.

^{5.} Христева, Л. А. Гуминовые удобрения. Теория и практика их применения / Л.А. Христева. – Днепропетровск, 1980, Т. 2. – с 5 – 23.

Wallschlager, D. The role of humic substances in the aqueous mobilization of mercury from contaminated floodplain soils / D. Wallschlager, M.V. Desai, R.D. Wilken // Water, air, and soil pollution, Aug. 1996, v. 90 (3/4), P. 507 – 520.

Мурсалимова Гульнара Рамильевна, заместитель директора Оренбургской опытной станции садоводства и виноградарства, кандидат биологических наук, 03.02.01 — Ботаника 460018, г. 460041 г. Оренбург, пос. Ростоши, п/о Овощевод, тел./ факс: (3532) 47-27-34, 47-30-42, e-mail: binogradnik@yandex.ru

Иванова Елена Алексеевна, директор Оренбургской опытной станции садоводства и виноградарства, кандидат биологических наук, 03.02.01 — Ботаника 460018, г. 460041 г. Оренбург, пос. Ростоши, п/о Овощевод, тел./ факс: (3532) 47-27-34, 47-30-42, e-mail: binogradnik@yandex.ru

Турмухамбетова Алина Сериковна, студентка кафедры общей биологии Оренбургского государственного университета 460018, г. Оренбург, пр-т Победы, 13, тел.: 8(3532)372483; e-mail: ali.turmuhambetova@yandex.ru