Каменев С.В., Лапынина М.Ю., Фот А.П.

Оренбургский государственный университет E-mail: kamenev sergey@mail.ru

МОДИФИКАЦИЯ ПЛАСТИН ЗВЕНЬЕВ ПРИВОДНЫХ РОЛИКОВЫХ ЦЕПЕЙ

Статья посвящена оценке влияния на напряженно-деформированное состояние пластин звеньев приводных роликовых цепей формы и размеров пластин.

Ключевые слова: приводная роликовая цепь, звено цепи, пластина звена, напряжённо-деформированное состояние пластины.

Концентрация напряжений в сечениях пластин звеньев приводных цепей является одним из факторов, определяющих длительную прочность как собственно пластин, так и цепи в целом и надёжность работы цепной передачи. Вопрос повышения надёжности работы особенно актуален в высоконагруженных быстроходных передачах, например, в приводах буровых установок. Многолетняя практика эксплуатации цепных передач определила различные варианты конструктивного исполнения приводных цепей (звеньев цепей и их деталей), наиболее распространённые из которых показаны на рис. 1 и 2. Классической формой пластин звеньев можно считать пластины с криволинейным контуром (типа «восьмёрка»), как на рис. 2.

Известно, что форма пластины влияет на концентрацию напряжений в её сечениях, и, как отмечает автор [1], классическая форма пластин типа «восьмёрка» (рис. 2) с наибольшей шириной b (рис. 4), обеспечивая меньший вес пластины, при прочих равных условиях снижает её долговечность в 1,25...1,5 раза по сравнению с пластиной с прямыми боковыми гранями (рис. 1). При этом даже частичная замена криволинейных поверхностей боковых граней плоскими (рис.3) позволяет существенно увеличить долговечность пластин (согласно данным [2], более чем на 30%). Как будет показано далее, уплощение? пластин может быть осуществлено различными конструктивными решениями с изменением высоты R проушин и значений радиуса R, закругления контура как оконечных частей пластин, так и радиусов R, выкружек в зауженной части пластин (соотношений с радиусом r отверстий в пластине).

С учётом сказанного, авторами настоящей работы проведено исследование влияния уплощения пластин цепи на концентрацию напряжений с определением параметров напряжен-

но-деформированного состояния (НДС) пластин на основе математического моделирования методом конечных элементов (МКЭ) с применением универсальной САЕ-системы «ANSYS»,

Рисунок 1. Пластины звеньев с прямыми боковыми гранями – преимущественно в приводных цепях малого шага

Рисунок 2. Пластины звеньев с криволинейными боковыми гранями (типа «восьмёрка») – в большинстве приводных цепей (классическая форма)

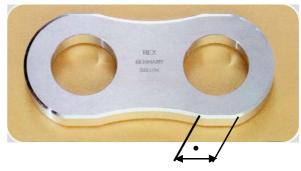


Рисунок 3. Пластины с «уплощениями» – боковые грани пластин содержат участки с криволинейной и плоской поверхностями (Δ) (фирма Rexnord Kette GmbH – [2])

освещённого более подробно в работе [3]. Разработанная для этих целей параметрическая модель представляла собой комбинацию конечно-элементных моделей наружного звена цепи и двух ее внутренних звеньев. Для эксперимента в качестве исходных были взяты пластины внутренних (ВП) и наружных (НП) звеньев однорядной цепи с шагом 25,4 мм (с толщиной пластин δ, равной 3,2 мм) [4], [5].

Определение параметров НДС пластин производилось в интервалах значений уплощений Δ , причём границы интервала устанавливались с учётом ограничений на размеры высоты R проушины и радиуса R_1 закруглений по условию сборки звеньев цепи и возможности их взаимного поворота на звёздочке передачи в процессе эксплуатации. Неизменными параметрами в эксперименте оставались значения ширины b и b_1 пластины, диаметра отверстий 2г в пластине и толщины δ пластины. Разрушающая нагрузка на пластину составляла 32,5 кH.

Модификация контура пластины осуществлена в вариантах уплощений I, II и III (всего три) на базовых (без уплощения) пластинах завода-изготовителя «А» (рис. 4...7). Во всех вариантах минимальная ширина b_1 пластины удовлетворяла условию $b_1 \ge (b-2r)$

Размеры и параметры НДС пластин ВП и НП завода — изготовителя «А» приведены в табл. 1 и табл. 2.

Обозначено здесь и далее: G-вес пластин (при удельном весе материала 7,85 г/см³); $\sigma_{_{\text{ном}}}$ и $\sigma_{_{\text{мах}}}$ – номинальные и максимальные напряжения в сечениях пластины соответственно; $\alpha_{_{\sigma}}$ – величина коэффициента концентрации.

Уплощения выполнялись на боковой грани слева от оси отверстия (рис. 5, тип I, увеличенная высота проушины), симметрично относительно оси отверстия (рис. 6, тип II, увеличенные высота проушины и радиус закругле-

ния пластины) и справа от оси отверстия (рис. 7, тип III).

Размеры и параметры НДС пластин ВП и НП по типу I приведены в табл. 3 и 4.

При построении пластин по рис. 6 использованы соотношения (1):

$$\begin{array}{c} R_{_{\rm B}} = & (t^2 + b_{_1}{}^2 - 4R_{_1}{}^2)/(8R_{_1} - 4b_{_1}), \\ {\rm где} \ R_{_1} = & [(b/2)^2 + (\Delta/2)^2]^{0.5}(1) \end{array}$$

После подстановки в (1) постоянных значений для пластины ВП (t=25,4 мм; $b_{_{1,\mathrm{BH}}}$ =18 мм;

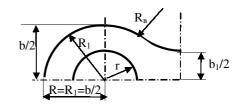


Рисунок 4. Базовая пластина типа «восьмёрка» (без уплощения)

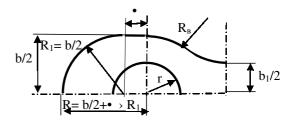


Рисунок 5. Пластина с увеличенной высотой R проушины – тип I (с уплощением Δ)

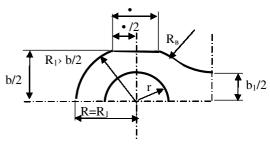


Рисунок 6. Пластина со срезом боковых граней, увеличенной высотой R проушины и увеличенным радиусом R_1 закругления — тип II (с уплощением Δ , симметричным относительно оси отверстия в пластине)

Таблица 1. Размеры и параметры НДС пластин ВП завода-изготовителя «А»

• , MM	b, мм	b ₁ , мм	δ, мм	2г, мм	R ₁ , мм	R _в , мм	G , г	σном, ΜΠα	σ _{мах} , ΜΠа	$\alpha_{\sigma_{\kappa}}$
0,000	23,0	18	3,20	11,67	11,500	22,008	17,971	896,403	2543,554	2,838

Таблица 2. Размеры и параметры НДС пластин НП завода-изготовителя «А»

• , MM	b, мм	b ₁ , мм	δ, мм	2г, мм	R ₁ , мм	R _в , мм	G , г	σ, МПа	$\sigma_{_{MAX}}$, M Πa	α_{σ_K}
0,000	20,0	15	3,20	7,75	10,000	23,508	16,467	829,082	3330,631	4,017

 $b_{\rm BH}$ =23 мм; $\Delta_{\rm BH}$ /2=0...5,3889 мм) получены зависимости (2) и (3) для расчёта значений $R_{\rm 1-BH}$ и $R_{\rm 1-BH}$ жак функций Δ :

и $R_{\text{в-BII}}$ как функций $\Delta_{\text{вп}}$: $R_{\text{1-BII}} = [132,25 + (\Delta_{\text{ВII}}/2)^2]^{0.5}, \text{ мм;} \qquad (2)$ $R_{\text{в-BII}} = (440.16 - \Delta_{\text{ВII}}^2)/(4[529 + \Delta_{\text{ВII}}^2]^{0.5} - 72), \text{ мм.} (3)$ Аналогично для пластин НП (t=25,4 мм; b_{1-HII}=15 мм; b_{HII}=20 мм; $\Delta_{\text{HII}}/2$ =0...7,8288 мм) получены зависимости (4) и (5):

$$R_{\text{1-HII}} = [100 + (\Delta_{\text{HII}}/2)^2]^{0.5}, \text{ mm}; \qquad (4)$$

$$R_{\text{B-HII}} = (470,16 - \Delta_{\text{HII}}^2) / [4(400 + \Delta_{\text{HII}}^2)^{0.5} - 60], \text{ mm}. (5)$$

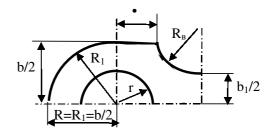


Рисунок 7. Пластина с уплощением Δ , смещённым от оси отверстия в пластине к оси симметрии пластины — вариант III

Таблица 3. Размеры и параметры НДС пластин ВП по типу I

• *, MM	b, мм	b ₁ , мм	δ , mm	2г, мм	R ₁ , мм	R _B , MM	G , г	σ _{ном} , ΜΠ a	$\sigma_{_{MAX}}$, M Πa	$\alpha_{\sigma_{K}}$
0,000	23,0	18	3,20	11,67	11,500	22,008	17,971	896,403	2543,554	2,838
0,120	23,0	18	3,20	11,67	11,500	22,008	18,110	896,403	2530,513	2,823
0,240	23,0	18	3,20	11,67	11,500	22,008	18,248	896,403	2517,819	2,809
0,360	23,0	18	3,20	11,67	11,500	22,008	18,387	896,403	2505,460	2,795
0,480	23,0	18	3,20	11,67	11,500	22,008	18,526	896,403	2493,426	2,782
0,600	23,0	18	3,20	11,67	11,500	22,008	18,664	896,403	2481,708	2,769
0,720	23,0	18	3,20	11,67	11,500	22,008	18,803	896,403	2470,295	2,756
0,840	23,0	18	3,20	11,67	11,500	22,008	18,942	896,403	2459,184	2,743
0,960	23,0	18	3,20	11,67	11,500	22,008	19,080	896,403	2448,361	2,731
1,080	23,0	18	3,20	11,67	11,500	22,008	19,219	896,403	2437,820	2,720
1,200	23,0	18	3,20	11,67	11,500	22,008	19,352	896,403	2427,979	2,709

Таблица 4. Размеры и параметры НДС пластин НП по типу I

• *, MM	b, мм	b ₁ , мм	δ , mm	2г, мм	R ₁ , мм	R _B , MM	G , г	σ _{ном} , ΜΠ a	$\sigma_{_{MAX}}$, M Πa	$\alpha_{\sigma_{\kappa}}$
0,000	20,0	15	3,20	7,75	10,000	23,508	16,467	829,082	3330,631	4,017
0,270	20,0	15	3,20	7,75	10,000	23,508	16,738	829,082	3293,431	3,972
0,540	20,0	15	3,20	7,75	10,000	23,508	17,009	829,082	3263,070	3,936
0,810	20,0	15	3,20	7,75	10,000	23,508	17,280	829,082	3227,655	3,893
1,080	20,0	15	3,20	7,75	10,000	23,508	17,552	829,082	3198,571	3,858
1,350	20,0	15	3,20	7,75	10,000	23,508	17,823	829,082	3175,917	3,831
1,620	20,0	15	3,20	7,75	10,000	23,508	18,094	829,082	3151,237	3,801
1,890	20,0	15	3,20	7,75	10,000	23,508	18,366	829,082	3128,461	3,773
2,160	20,0	15	3,20	7,75	10,000	23,508	18,637	829,082	3107,173	3,748
2,430	20,0	15	3,20	7,75	10,000	23,508	18,908	829,082	3087,508	3,724
2,700	20,0	15	3,20	7,75	10,000	23,508	19,174	829,082	3069,441	3,702

Таблица 5. Размеры и параметры НДС пластин ВП по типу II

• *, MM	b, мм	b ₁ , мм	δ , mm	2г, мм	R ₁ , мм	R _в , мм	G , г	$\sigma_{_{\scriptscriptstyle{HOM}}},$ МПа	$σ_{\text{\tiny MAX}}$, ΜΠα	$\alpha_{\sigma \kappa}$
0,000	23,0	18	3,20	11,67	11,500	22,008	17,971	896,403	2543,424	2,837
1,078	23,0	18	3,20	11,67	11,513	21,840	18,002	896,403	2561,176	2,857
2,156	23,0	18	3,20	11,67	11,550	21,345	18,093	896,403	2549,409	2,844
3,234	23,0	18	3,20	11,67	11,613	20,555	18,237	896,403	2521,385	2,813
4,312	23,0	18	3,20	11,67	11,700	19,515	18,431	896,403	2500,478	2,789
5,390	23,0	18	3,20	11,67	11,811	18,279	18,668	896,403	2487,178	2,775
6,468	23,0	18	3,20	11,67	11,946	16,902	18,946	896,403	2467,839	2,753
7,546	23,0	18	3,20	11,67	12,103	15,439	19,261	896,403	2434,309	2,716
8,624	23,0	18	3,20	11,67	12,282	13,935	19,608	896,403	2407,015	2,685
9,702	23,0	18	3,20	11,67	12,481	12,427	19,984	896,403	2361,627	2,635
10,778	23,0	18	3,20	11,67	12,700	10,978	20,379	896,403	2333,364	2,603

Размеры и параметры НДС пластин ВП и НП по типу II приведены в табл. 5 и 6.

При построении пластин по рис. 7 использованы соотношения (6):

$$R_{_{\rm B}} = [(t-2\Delta)^2 + (b-b_{_1})^2]/[4(b-b_{_1})];$$
 $R_{_{\rm Bmin}} = (b-b_{_1})/2.$ (6)
После подстановки в (6) постоянных зна-

После подстановки в (6) постоянных значений для пластины ВП (t=25,4 мм; $b_{\text{1-BH}}$ =18 мм; b_{BH} =23 мм) и пластины НП (t=25,4 мм; $b_{\text{1-HH}}$ =15 мм; b_{HH} =20 мм) получены Δ_{maxBH} = Δ_{maxHH} =10,2 мм

и зависимость (12) для расчёта значений $R_{_{\text{в-ВП}}}$ и $R_{_{_{\text{в-ИП}}}}$;

и $R_{\text{в-H\Pi}}$ как функции $\Delta_{\text{вп(H\Pi)}}$: $R_{\text{в-BП(H\Pi)}} = [(25,4-2\Delta)^2+25]/20,$ мм. (7) Размеры и параметры НДС пластин ВП и НП по типу III приведены в табл. 7 и 8.

Анализируя данные таблиц 1...8, можно отметить, что при нулевом уплощении наиболее лёгкими являются пластины цепей завода — изготовителя и пластины типов I и II (идентичны заводским). При максимальных значениях

Таблица 6. Размеры и параметры НДС пластин НП по типу II

• *, MM	b, мм	b ₁ , мм	δ , mm	2г, мм	R ₁ , мм	R _в , мм	G , г	$\sigma_{_{\text{\tiny HOM}}}, M\Pi a$	$\sigma_{_{MAX}}$, M Πa	$\alpha_{\sigma \kappa}$
0,000	20,0	15	3,20	7,75	10,000	23,508	16,467	829,082	3330,567	4,017
1,566	20,0	15	3,20	7,75	10,031	23,103	16,533	829,082	3319,002	4,003
3,132	20,0	15	3,20	7,75	10,122	21,948	16,721	829,082	3310,910	3,993
4,698	20,0	15	3,20	7,75	10,272	20,205	17,011	829,082	3280,239	3,956
6,264	20,0	15	3,20	7,75	10,479	18,083	17,389	829,082	3245,002	3,914
7,830	20,0	15	3,20	7,75	10,739	15,780	17,840	829,082	3199,186	3,859
9,396	20,0	15	3,20	7,75	11,048	13,453	18,353	829,082	3155,975	3,807
10,962	20,0	15	3,20	7,75	11,403	11,209	18,917	829,082	3110,818	3,752
12,528	20,0	15	3,20	7,75	11,799	9,107	19,525	829,082	3055,492	3,685
14,094	20,0	15	3,20	7,75	12,233	7,172	20,172	829,082	3013,441	3,635
15,658	20,0	15	3,20	7,75	12,700	5,426	20,845	829,082	2964,718	3,576

Таблица 7. Размеры и параметры НДС пластин ВП по типу III

• *, MM	b, мм	b ₁ , мм	δ, мм	2г, мм	R ₁ , мм	R _B , MM	G , г	$\sigma_{_{\text{ном}}}$, МПа	$σ_{\text{\tiny MAX}}$, ΜΠα	$lpha_{\sigma_K}$
2,512	23,0	18	3,20	11,67	11,5	22,009	18,011	896,403	2664,945	2,973
3,281	23,0	18	3,20	11,67	11,5	18,994	18,139	896,403	2656,783	2,964
4,050	23,0	18	3,20	11,67	11,5	16,216	18,265	896,403	2646,600	2,952
4,818	23,0	18	3,20	11,67	11,5	13,674	18,392	896,403	2608,821	2,910
5,587	23,0	18	3,20	11,67	11,5	11,368	18,518	896,403	2600,338	2,901
6,356	23,0	18	3,20	11,67	11,5	9,299	18,643	896,403	2590,116	2,889
7,123	23,0	18	3,20	11,67	11,5	7,467	18,767	896,403	2568,233	2,865
7,894	23,0	18	3,20	11,67	11,5	5,870	18,891	896,403	2560,188	2,856
8,662	23,0	18	3,20	11,67	11,5	4,510	19,013	896,403	2551,485	2,846
9,431	23,0	18	3,20	11,67	11,5	3,387	19,131	896,403	2531,548	2,824
10,200	23,0	18	3,20	11,67	11,5	2,505	19,242	896,403	2514,871	2,806

Таблица 8. Размеры и параметры НДС пластин НП по типу III

• *, MM	b, мм	b ₁ , мм	δ, мм	2г, мм	R ₁ , мм	R _в , мм	G , г	σ _{ном} , ΜΠα	$\sigma_{_{MAX}}$, M Πa	α_{σ_K}
2,151	20,0	15	3,20	7,75	10,0	23,506	16,496	829,082	3284,646	3,962
2,956	20,0	15	3,20	7,75	10,0	20,239	16,630	829,082	3275,514	3,951
3,761	20,0	15	3,20	7,75	10,0	17,232	16,762	829,082	3266,569	3,940
4,566	20,0	15	3,20	7,75	10,0	14,483	16,895	829,082	3259,434	3,931
5,371	20,0	15	3,20	7,75	10,0	11,994	17,027	829,082	3254,860	3,926
6,176	20,0	15	3,20	7,75	10,0	9,764	17,158	829,082	3247,000	3,916
6,980	20,0	15	3,20	7,75	10,0	7,793	17,289	829,082	3241,271	3,909
7,785	20,0	15	3,20	7,75	10,0	6,081	17,418	829,082	3236,545	3,904
8,590	20,0	15	3,20	7,75	10,0	4,628	17,546	829,082	3231,689	3,898
9,395	20,0	15	3,20	7,75	10,0	3,434	17,670	829,082	3228,609	3,894
10,200	20,0	15	3,20	7,75	10,0	2,505	17,789	829,082	3225,724	3,891

^{*)} в таблицах 3...8 шаг изменения Δ принимался равным 0,1 интервала изменения Δ

уплощений наименьший вес имеют пластины типа III. Значения коэффициента концентрации напряжений уменьшаются (по сравнению с таковыми в заводских пластинах) при увеличении уплощений для всех трёх типов модификаций, причём наименьшие значения получены для пластин типа II.

Если учитывать прямую экономию металла при изготовлении цепи, следовало бы остановиться на варианте с более лёгкой пластиной завода-изготовителя. Однако снижение долговечности цепи при высоких значениях коэффициентов концентрации напряжений фактически требует от производителя цепей увеличить объём производства последних, в результате чего первоначальная экономия металла может стать нецелесообразной. Учитывая данное обстоятельство, при выборе варианта модификации пластины нами предложено использовать комплексный критерий УМ условной относительной металлоёмкости (8):

$${
m YM}=({
m G_M}/{
m G_B})\,({
m \alpha_{\sigma M}}/({
m \alpha_{\sigma B}})^{\rm m},$$
 (8) где ${
m G_M}$ и ${
m G_B}$ – веса модифицированной и базовой пластин соответственно; ${
m \alpha_{\sigma M}}$ и ${
m \alpha_{\sigma B}}$ – значения коэффициента концентрации напряжения в модифицированной и базовой «Б» (завода-изготовителя) пластинах соответственно; т – показатель кривой усталости для приводных роликовых цепей, т=6,95 [4].

В таблице 9 приведены результаты расчёта показателя УМ на основе экспериментальных данных таблиц 1...8.

В таблице 9 жирно курсивом выделены значения УМ, отвечающие наиболее удачным соче-

таниям размеров пластин различных модификаций. Следует отметить, что вариант уплощения по типу III даёт определённый эффект, но он существенно меньше, чем по вариантам I и II (для этих вариантов эффекты примерно одинаковы при значениях уплощений в пределах 0,6...0,7 максимальных значений D). На рис. 8 в качестве примеры приведены зависимости изменения УМ при изменении уплощения для модификаций по типам I и II пластин НП наружных звеньев цепи с шагом 25,4 мм. Аппроксимация экспериментальных данных произведена полиномами (9) и (10) с достоверностью аппроксимации R², равной 0,9995 и 0,9988 для модификаций пластин по типам I и II соответственно:

$$\begin{array}{c} H\Pi-I: \mathcal{Y}M=\\ =-0.1312\,D^3+0.4133\,D^2-0.6224\,D+1.0000; (9)\\ H\Pi-II: \mathcal{Y}M= \end{array}$$

 $=0.5356 D^3 - 0.9799 D^2 + 0.0134 D + 0.9974.(10)$

Значения уплощений целесообразно принимать в пределах (0,9...1,0) максимально возможных для каждого варианта модификации. Учитывая значения УМ, можно предположить, что реальная экономия металла при изготовлении цепей (с учётом того, что вес пластин в цепи равен примерно 50...60% от общего веса цепи) составляет около 15% и 20% для модификаций I и II соответственно (если модификация пластин ВП и НП выполнена по одному типу). Больший эффект достигается на пластинах наружных звеньев. При этом веса пластин цепей и цепей в целом могут превышать аналогичные характеристики цепей завода изготовителя, а значения УРН удельной разрушающей нагрузки [2],

			Условна	ая относительна	ая мета.	ллоёмкость УМ					
D		Π.	ластина ВП		Пластина НП						
D		Mo	одификация			Mo	одификация				
	Б	I	II	III	Б	I	II	III			
0,0	1	1	0,997556	1,384315	1	1	1	0,910232			
0,1	1	0,971297	1,049274	1,365076	1	0,939911	0,979941	0,900065			
0,2	1	0,945460	1,021674	1,336348	1	0,896562	0,974001	0,889800			
0,3	1	0,920142	0,954278	1,218084	1	0,843893	0,928817	0,882718			
0,4	1	0,897544	0,908672	1,200310	1	0,805028	0,881571	0,881780			
0,5	1	0,875267	0,888723	1,174091	1	0,778518	0,819713	0,872953			
0,6	1	0,853411	0,853417	1,115331	1	0,748332	0,767407	0,868748			
0,7	1	0,831931	0,789736	1,098411	1	0,721532	0,714900	0,867479			
0,8	1	0,812840	0,742315	1,078885	1	0,699121	0,651027	0,864563			
0,9	1	0,796113	0,663897	1,028582	1	0,678314	0,611677	0,864482			
1,0	1	0,779361	0,621898	0,989577	1	0,660104	0,564137	0,865655			

Таблица 9. Значения показателя условной металлоёмкости УМ

 $^{^*)}$ D - уплощение в долях интервала от минимального $\Delta_{_{
m min}}$ до максимального $\Delta_{_{
m max}}$ значений уплощения на пластине

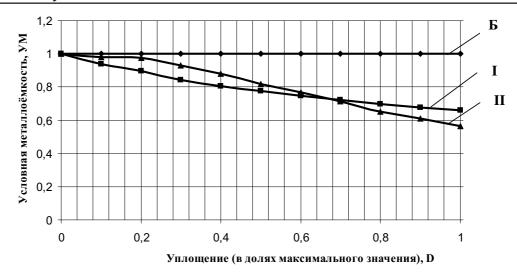


Рисунок 9. Зависимость УМ от уплощения на пластине НП

[6] и [7] могут быть несколько ниже. Следовательно, для более объективного выбора конструкции цепей необходимо использовать не только критерий УРН, но и значение УМ условной относительной металлоёмкости пластин цепей.

Общие выводы и заключение

Значения коэффициента концентрации напряжений в сечениях пластин приводных роликовых цепей зависят от соотношения размеров пластин и от формы пластин.

Снижение значений коэффициента концентрации может быть достигнуто различными модификациями пластин с использованием плоских участков (уплощений) на боковых гранях пластин (при возможных значениях уплощений на пластинах внутренних звеньев цепи с шагом 25,4 мм уменьшение коэффициента концентрации составило 4,55...8,25%, на пластинах наружных звеньев — 1,79...10,98%).

Наиболее удачной можно признать модификацию пластин по типу II (пластина со срезом боковых граней, увеличенной высотой проушины, увеличенным радиусом закругления пластины и уплощением, симметричным отно-

сительно оси отверстия в пластине), позволяющую уменьшить значение коэффициента концентрации напряжений на 8,25% и 10,98% для пластин внутренних и наружных звеньев соответственно (эквивалентно повышению долговечности цепи по сопротивлению усталости пластин примерно на 73,5% при увеличении веса цепи примерно на 10%). Отличие значений эффекта снижения коэффициента концентрации на пластинах внутренних и наружных звеньев может объясняться соотношениями размеров ширины пластин и диаметров отверстий в них под детали шарниров (втулки и валика соответственно), которые для исследованных пластин равны 1,97 и 2,58 соответственно.

Модификация по типу III (с уплощением Δ , смещённым от оси отверстия в пластине к оси симметрии пластины) не даёт существенного положительного эффекта и применение её не целесообразно.

Для комплексной оценки конструктивного совершенства цепей необходимо использовать критерии удельной разрушающей нагрузки и условной относительной металлоёмкости пластин.

18.06.2014

Список литературы:

^{1.} Ивашков, \dot{M} . \dot{M} . Пластинчатые цепи. Конструирование и расчёт / И.И.Ивашков. — М.: ГНТИ машиностроительной литературы, 1960. — 264 с.

^{2.} Цепи высокого качества: каталог фирмы Rexnord Kette GmbH [Электронный ресурс]. – Режим доступа: http://www.inhydro.ru/docs/InHydro.Chains.pdf

^{3.} Напряжённо-деформированное состояние пластин звеньев приводных роликовых цепей / С.В. Каменев [и др.] // Вестник Оренбургского государственного университета. – 2014. – №1. – С. 196–202.

^{4.} ГОСТ 13568-97. Цепи приводные роликовые повышенной прочности и точности. Технические условия. – М.: Изд-во стандартов, 1988. – 15 с.

- 5. ТУ 4173-001-25258449-2001. Цепи приводные роликовые повышенной прочности и точности. Ульяновск: Ульяновский Завод Цепей, 2001.
- 6. Воробьев, Н.В. Цепные передачи: монография / Н.В. Воробьев. М.: Машиностроение, 1968. 262 с. 7. Фот, А.П. Оценка конструктивно-технологического совершенства приводных цепей / А.П.Фот // Вестник ОГУ. 2012. №1. – C. 197–199.

Сведения об авторах:

Каменев Сергей Владимирович, доцент кафедры технологии машиностроения, металлообрабатывающих станков и комплексов Оренбургского государственного университета, кандидат технических наук, e-mail: kamenev sergey@mail.ru

Лапынина Марина Юрьевна, аспирант Оренбургского государственного университета, e-mail: marina lap84@mail.ru;

Фот Андрей Петрович, главный ученый секретарь Оренбургского государственного университета, доктор технических наук, профессор, e-mail: fot@mail.osu.ru 460018, г. Оренбург, ул. Терешковой, 134, ауд. 21028, тел. (3532)375989