Богатова О.В., Кичко Ю.С.

Оренбургский государственный университет E-mail: bov@mail.osu.ru

ВЛИЯНИЕ ЛАКТОАМИЛОВОРИНА НА ПЕРЕВАРИМОСТЬ ПИТАТЕЛЬНЫХ ВЕЩЕСТВ КОРМА И ВИТАМИННЫЙ СОСТАВ ИНКУБАЦИОННЫХ ЯИЦ УТОК

Рассматриваемая проблема применения пробиотика лактоамиловорина, как кормового средства к основному рациону птицы, позволяющая улучшить переваримость питательные вещества корма и повышать инкубационные качества яиц. Применение пробиотика ремонтным уткам позволяет повысить переваримость протеина, жира, клетчатки и улучшить обмен энергии и минеральных веществ в организме.

Ключевые слова: пробиотик, переваримость, корм, химический состав, витамины, яйцо.

Из научных исследований и производственной практики известно, что достичь высокой продуктивности и рентабельности производства уток невозможно без полноценного кормления. Недостаточное обеспечение птицы соответствующими кормами приводит к нарушению обмена веществ, перерасходу кормов и, как следствие, сокращению выхода продукции. В связи с чем, изыскание биологически полноценных и недорогих комовых средств, повышающих биологическую активность корма, улучшающих обменные процессы в организме птицы является актуальной задачей, стоящей перед птицеводческой отраслью.

Обеспечить продуктивность и жизнеспособность птицы, а также повысить переваримость питательных веществ корма, возможно благодаря применению биостимулирующих препаратов, таких как пробиотики, в частности, лактоамиловарина и воды (католита) полученной электрохимическим способом.

Переваримость представляет собой ряд гидролитических расщеплений составных частей корма (белков, жиров, углеводов) под влиянием ферментов пищеварительных соков и микроорганизмов (симбионтов), в следствие чего вещества, входящие в состав кормов распадаются на аминокислоты, моносахариды, жирные кислоты и растворимые соли. О переваримости судят по разности между питательными веществами корма и питательными веществами помета.

В кормлении птицы применяют большое количество разнообразных кормовых средств для балансирования рационов. Одним из таких препаратов является пробиотик лактоамиловорин, который стабильно обеспечивает повышение потребления концентрированных

кормов, оказывает профилактическое и лечебное действие при желудочно-кишечных заболеваниях.

Материалы и методы исследований

Исследования были проведены на птицефабрике ОАО «Спутник» на ремонтном молодняке уток линии ${\rm G_2}$ материнской формы кросса «Благоварский».

Лактоамиловорин содержит лиофильно высушенную культуру молочнокислых бактерий Lactobacillus amylovorus БТ-24/88 и наполнитель — сухую молочную сыворотку, кукурузную муку. В 1 г препарата содержится не менее 5×10^8 КОЕ (колониеобразующих единиц) молочнокислых бактерий.

Испытуемый нами пробиотик представляет собой однородный мелкодисперсный порошок от белого до светло-коричневого цвета, со слабовыраженным кисломолочным запахом, не содержит ГМО.

Лактоамиловарин опытным группам уток скармливали в разных сочетаниях и дозах. Птице опытной группы 1 пробиотик вводили с кормом в составе основного рациона — 7,0 г препарата на $100\,\mathrm{kr}$ комбикорма. Утята опытной группы $2\,\mathrm{получали}$ его с водой — $0,7\,\mathrm{r}$ на $10\,\mathrm{n}$ воды. В $3\,\mathrm{опытной}$ группе препарат скармливали с католитом с ϕ — $550\pm50\,\mathrm{mB}$ — $0,7\,\mathrm{r}$ на $10\,\mathrm{n}$. Контрольной группе (4) основной рацион скармливали без добавления препарата. Утки опытных групп получали пробиотик с периодичностью каждые $7\,\mathrm{суток}$ с 2-дневным перерывом.

Результаты исследований

Полученные нами результаты в физиологических опытах (табл. 1 и 2) позволили уста-

новить различия в переваримости и использовании питательных веществ корма утками при скармливании им пробиотика лактоамиловорина. Определены коэффициенты переваримости питательных веществ корма (табл. 1) и рассчитан баланс кальция и фосфора (табл. 2).

Анализ данных баланса кальция и фосфора представлен в таблице 2.

Полученные результаты по изучению влияния пробиотика на воспроизводительные каче-

ства уток линии ${\rm E_2}$ материнской формы кросса «Благоварский», а также на показатели качества инкубационных яиц, свидетельствуют о том, что испытуемый препарат оказал определенное влияние на показатели качества инкубационных яиц таблицы 3 и 4. Качество инкубационных яиц подопытных уток приведено в таблице 3.

О качестве яиц и пригодности их к инкубации можно судить по содержанию в них витаминов таблица 4.

Таблица 1. Коэффициенты переваримости питательных веществ корма утятами, в возрасте 26 недель %

Показатель	Группа				
Показатель	контрольная	1	2	3	
Протеин	62,0±2,900	63,4+2,900	64,0±3,001	64,5±3,100	
Жир	73,9±4,005	74,2±0,025	76,5±4,105	76,9±4,520	
Клетчатка	18,5±1,105	23,63±1,205 *	26,45±1,230**	27,3±1,240**	
БЭВ	78,0±4,920	81,5±5,285**	83,4±6,025**	84,0±6,950**	

^{*} P <0,05; ** P < 0,01

Таблица 2. Коэффициенты использования кальция и фосфора, %

Показатель	Группа				
Показатель	контрольная	1	2	3	
Кальций	52,5±3,200	67,0±3,118**	68,5±3,120*	69,5±3,120**	
Фосфор	38,5±2,120	51,5±3,240**	52,4±3,209*	53,0±3,210*	

^{*} P < 0,05; ** P < 0,01

Таблица 3. Инкубационные качества яиц

Показатель	Группа			
Hokasaresib	контроль	1	2	3
Индекс формы, %	69,2±0,3	70,8±0,2	71,5±0,5	73,5±0,5
Толщина скорлупы, мкм	$0,387\pm0,02$	0,402±0,011	0,404±0,012	0,403±0,010
Масса составных частей, г Белка Желтка скорлупы	47,75±0,80 32,64±0,30 10,1±0,03	47,76±0,51 32,66±0,28 9,99±0,05	47,83±0,52 32,68±0,33 9,90±0,06	48,1±0,65 32,70±0,25 9,89±0,07
Отношение массы белка, к массе желтка	1,46	1,46	1,46	1,47

Таблица 4. Содержание витаминов в инкубационных яйцах подопытных уток, мкг/г

Показатель	Группа			
HORASATCJIS	контроль	1	2	3
Содержание в белке: Витамина В	2,30±0,016	2,42±0,030	2,45±0,018	2,46±0,21*
Содержание в желтке витаминов A B_2 \mathcal{I} E E каротиноидов	10,86±0,97 5,8±0,02 0,20±0,010 39,0±3,90 18,8±1,52	10,69±0,89 6,3±0,03 0,21±0,002 39,3±3,52 18,9±1,50	10,90±0,97* 6,5±0,02 0,22±0,001 39,5±3,65 19,0±1,61	11,0±0,85* 6,7±0,04* 0,23±0,003 39,8±3,60 19,2±1,64

^{*} P < 0,05

Обсуждение результатов

Данные таблицы 1 свидетельствуют о том, что в возрасте 26 недель протеин корма переваривался лучше в 3 опытной группе на 2,5% где уткам его выпаивали с католитом, на 2,0% во 2 опытной, где птица получала препарат с водопроводной водой и на 1,4% при даче его с кормом по сравнению с контролем.

Подобная закономерность отмечалась и по переваримости остальных питательных веществ корма. Так, переваримость сырого жира была выше в опытных группах 3, 2 и 1 — на 3,0; 2,6 и 0,3; клетчатки — на 8,8; 7,9 и 5,1; БЭВ — на 6,0; 5,4 и 3,5% соответственно по отношению к контролю.

Установлено положительное влияние пробиотика лактоамиловорина на минеральный обмен в организме уток. Так, если контрольные особи использовали из корма кальций на 52,5%, а фосфор — на 38,5%, то утки 1 опытной группы лучше соответственно на 14,5 и 13,0%, 2 — на 16,0 и 13,9%, 3 опытной — на 17,0 и 14,5%. Разница между утками, получавшими испытуемый препарат по использованию кальция составила 2,5%, фосфора — 1,5% в пользу 3 опытной группы.

Из таблицы 3 видно, что в яйцах, полученных от птицы 3 опытной группы, было больше белка — на 0.3; 0.2, по сравнению с 1 и 2 опытными группами и 0.4%, по сравнению с контролем, а желтка — на 0.04; 0.02 и 0.06%, соответственно.

Из таблицы 4 видно, что содержание витаминов в яйцах, в зависимости от вариантов скармливания им пробиотика было различным. Так, содержание в белке и желтке витамина группы В было самым высоким в 3 опытной группе и составило: в белке — 2,46, а в желтке 6,7 мкг/г, что выше, чем в контроле на 0,16 и 0,9 мкг/г соответственно. Содержание витаминов А, Д, Е было практически одинаковым с некоторым преимуществом в сторону опытных групп. Подобная тенденция отмечена и по содержанию в яйцах каротиноидов.

Выводы

- 1. Назначение пробиотика ремонтным уткам позволяет повысить переваримость протеина на 2,0 и 2,5%, жира на 2,6 и 3,0%, клетчатки на 7,9 и 8,8%, БЭВ на 5,4 и 6,0%, улучшить обмен энергии и минеральных веществ в организме и их использование из корма.
- 2. Выращивание ремонтного молодняка уток с применением пробиотика лактоамиловорина улучшает инкубационные качества яиц, о чем свидетельствует большее количество белка на 0,3; 0,2, по сравнению с 1 и 2 опытными группами и 0,4%, по сравнению с контролем и желтка на 0,04; 0,02 и 0,06%.
- 3. Скармливание лактоамиловорина уткам позволяет увеличить содержание в белке и желтке витамина группы В, что составило: в белке 2,46, а в желтке 6,7 мкг/г, что выше, чем в контроле на 0,16 и 0,9 мкг/г.

22.08.2014

Список литературы:

- 1. Кичко, Ю.С. Влияние пробиотика лактоамиловорина на живую массу ремонтных уток / Ю.С. Кичко // Вестник Оренбургского Государственного Университета. -2006.- № 13. С. 150–151.
- 2. Клычкова, М.В. Влияние пробиотика лактоамиловорина на рост и развитие утят-бройлеров / М.В. Клычкова // Вестник Оренбургского государственного университета. 2006. №13. С. 151–152.
- 3. Современные биотехнологии в сельском хозяйстве [Текст]: монография / О.В. Богатова [и др.]. Оренбург: ИПК «Университет», 2012. 175 с.
- Клычкова, М.В. Влияние лактоамиловарина на мясные качества и химический состав мяса утят-бройлеров / М.В. Клычкова // Известия Самарской государственной академии. – Самара, 2013. – №1. – С. 102–105.
- 5. Кичко, Ю.С. Влияние пробиотика лактоамиловорина на зоотехнические показатели и химический состав мяса ремонтных уток / Ю.С. Кичко // Известия, Самарская государственная сельскохозяйственная академия, 2013. №1. С. 99–102.
- 6. Биологические и хозяйственно полезные качества уток при скармливании им лактоамиловорина / О.В. Богатова [и др.] // Вестник Оренбургского Государственного университета. 2013. № 9. С. 80–84.
- 7. Клычкова, М.В. Мясная продуктивность утят-бройлеров при скармливании им пробиотика / М.В. Клычкова, О.В. Богатова // Мясная Индустрия. М., 2013. № 10. С. 57–65.

 8. Кичко, Ю.С. Воспроизводительные качества уток при скармливании им пробиотика / Ю.С. Кичко, О.В. Богатова //
- 8. Кичко, Ю.С. Воспроизводительные качества уток при скармливании им пробиотика / Ю.С. Кичко, О.В. Богатова // Мясная Индустрия. М., 2013. № 11. С. 12–14

Сведения об авторах:

Богатова Ольга Викторовна, профессор кафедры биотехнологии животного сырья и аквакультуры Оренбургского государственного университета, доктор сельско-хозяйственныйх наук, e-mail: bov@mail.osu.ru

Кичко Юлия Сергеевна, преподаватель кафедры биотехнологии животного сырья и аквакультуры Оренбургского государственного университета, e-mail: oren50@mail.ru 460018, г. Оренбург, пр-т Победы, 13, ауд. 20625