Медведев С.А., Нестеров Д.В., Сипайлова О.Ю., Шейда Е.В.,

Институт биоэлементологии Оренбургского государственного университета $E ext{-mail: inst_bioelement@mail.ru}$

ИСПОЛЬЗОВАНИЕ ЛУЗГИ КАКАО В КОРМЛЕНИИ ЦЫПЛЯТ-БРОЙЛЕРОВ

В статье приведены экспериментальные данные по воздействию на продуктивные качества цыплят-бройлеров частичной замены в комбикорме пшеницы на лузгу какао. Установлено, что замена в комбикорме пшеницы на 2,5% лузги какао приводит к повышению среднесуточного привеса на 0,8 г/сутки, на 5% не оказывает влияние на среднесуточный привес, на 7,5% приводит к снижению средне среднесуточного прироста на 5,8%.

Ключевые слова. Лузга какао, цыплята-бройлеры, среднесуточный прирост, продуктивность

Основной задачей, стоящей перед производителями птицеводческого комплекса, является снижение себестоимости производства продукции, которая на 70-80% складывается из стоимости кормов. Основой комбикормов является зерновая часть, которая может достигать 50-60% в его структуре [1]. В настоящий момент стоимость одной тонны пшеницы 3 класса, в зависимости от региона РФ, составляет 5,7–9,0 тыс. руб./т, 4 класса – 5,7–8,4 тыс. руб./т (www.agro-bursa.ru). Представляющим практический интерес, является разработка технологии, которая позволит снизить стоимость корма для птицы путем использования отходов пищевой промышленности, которые частично заменят зерновую составляющую [2]. Применение подобной технологии отчасти позволит решить и экологические задачи по утилизации органических отходов. То есть суть подхода заключается в широком внедрении мало- и безотходных экологически чистых технологий, позволяющим в дальнейшем сократить количество отходов или перевести их в экологически безопасную форму [3].

К подобному роду отходов относится лузга какао бобов (какаовелла), которая по своей питательности не уступает пшеничным отрубям, составляющим до 5% рациона для птицы [1]. Так, содержание в лузге какао протеина достигает 17,0%, при этом содержание лигниноцеллюлозного комплекса может доходить до 21%, что, несомненно, снижает её питательные свойства, тем не менее, не исключает возможности применения в комбикормах для птицы. Также не мало важным положительным эффектом лузги какао, является её сробционная способность относительно тяжелых металлов [4], [5]. Цена лузги какао (оболочки бобов не дробленных) при покупки с кондитерских фабрик, по нашим сведениям, не превышает 4 тыс. руб./т.

Исходя из выше изложенного, нами было принято решение о проведении исследований по определение эффективности введения в структуру рациона цыплят-бройлеров какаовеллы.

Материалы и методы

Исследования были выполнены в 2012 г. в условиях экспериментально-биологической клиники (вивария) Оренбургского государственного университета. Для проведения лабораторного исследования из недельных цыплятбройлеров, по принципу пар-аналогов было сформировано 4 группы (n=30), до 15-дневного возраста птица находилась на подготовительном периоде. Начиная с 15-дневного возраста, вся подопытная птица, была переведена на основной учетный период. Контрольная группа получала основной рацион, I,II и III опытные группы — основной рацион с заменой 2,5; 5,0 и 7,5% зерновой части на нативную лузгу какао, соответственно.

Комбикорма, используемые для кормления подопытных цыплят-бройлеров, были составлены исходя из рекомендаций ВНИТИП (2008). Стартовый комбикорм контрольной группы состоял из пшеницы полновесной -31,1%; жмыха подсолнечного 35,0%-18,4%; ячменя не шелушенного -1,0%; шрота соевого 40%-20,0%; рыбной муки 58%-4,0%; кукурузы -16,3%; масла растительного -6,0%; отрубей пшеничных -1,0%, известняка -1,0%, соли поваренной -0,2% и премикса -1,0%. Содержание в одном килограмме обменной энергии составило 13,2 МДж, сырого протеина -222,1 г и сырой клетчатки -47,8 г.

В одном килограмме опытных стартовых рационов содержалось 13,0—13,1 МДж обменной энергии, 223,0—224,0 г, протеина и 52,7—62,7 г сырой клетчатки.

Ростовая композиция контрольной группы формировалась из пшеницы полновесной — 18,2%, жмыха подсолнечного 35,0% — 18,0%, ячменя не шелушенного — 4,1%, шрота соевого 40% — 7,5%, рыбной муки 58% — 4,5%, кукурузы — 40,0%, масла растительного — 4,5%, отрубей пшеничных — 1,0%, известняка — 1,0%, соли поваренной — 0,2% и премикса — 1,0%, и содержала в одном килограмме 13,5 МДж обменной энергии, 183,6 г сырого протеина и 42,2 г сырой клетчатки.

В одном килограмме ростового комбикорма опытных групп содержалось 13,4—13,5 МДж обменной энергии, сырого протеина—186,6—191,6 г и 46,0—53,6 г сырой клетчатки.

Балансирование по витаминному, аминокислотному и минеральному составу осуществлялось с помощью белково-витамино-минерального премикса.

Кормление опытной птицы проводилось 2 раза в сутки, учет поедаемых кормов — раз в сутки. Поение осуществлялось вволю. Микроклимат в помещении соответствовал требованиям ВНИТИПа (2004).

Контроль над ростом и развитием особей осуществлялся ежедневно, путем взвешивания каждой головы, утром до кормления.

Для определения переваримости, усвоения питательных веществ в возрастных периодах с 21 по 28 и с 35–42 дни были проведены балансовые опыты согласно методическим указаниям ВНИТИПа (2004).

Результаты и их обсуждения

При оценке показателя поедаемости кормов, было установлено, что его фактическое потребление за весь учетный период было наибольшим в І опытной группе, превысив уровень в контроле на 41 г/гол. (1,2%) (табл. 1).

Поедаемость корма у цыплят-бройлеров II и III опытных групп за период исследования, наоборот, была меньше, чем у контрольной птицы на 120 г/гол (3,8%) и 246 г или 7,7%, соответственно.

Как следует из полученных результатов, введение в рацион подопытной птицы лузги какао способствовало повышению переваримости питательных веществ корма в I и II опытных группах, по сравнению с контролем. Так, уровни переваримости органического вещества, сырого жира и БЭВ были выше на 3,6; 4,5 и 5,9% — в I

опытной группе и на 1,5; 3,7 и 3,0%, соответственно во II опытной группе. Исключение в обеих группах составила клетчатка, переваримость которой была ниже, чем в контроле на 6,8 и 5,6%, соответственно в I и II опытных группах.

Обратная картина наблюдалась в III опытной группе, птица которой уступала контрольной по показателям переваримости органического вещества корма на 2,3%, сырого протеина -3,3%, и сырой клетчатки корма -7,4%.

Данная тенденция сохранилась и в ростовой период: переваримость органического вещества наилучшей была в I опытной группе — 73,88%, тогда как в III группе, напротив, значение данного показателя было наименьшим — 67,06% (табл.3).

Переваримость сырого протеина во II опытной группе была самой высокой — 81,61%, а в III группе наименьшей — 70,44%. Превосходство по переваримости сырого жира I опытной группами составило — 1,5 и 5,8%, соответственно. По переваримости сырой клетчатки II опытная группы уступала контрольной 4,9% (различая не достоверны).

Результаты контрольных взвешиваний цыплят-бройлеров I опытной группы показали, что живая масса в 1 и 3 недели учетного периода не имела существенных отличий, и в конце исследования на 1,2% превзошла аналогичный показатель в контроле (табл.4).

Отставание особей II опытной группы в скорости прироста живой массы от аналогов из контрольной группы, в 1, 2 и 3 недели учетного периода составило 5,6, 5,5 и 5,7%, соответственно, при этом на финальной стадии исследования отставание было незначительным.

Живая масса цыплят III опытной группы за весь период наблюдения уступала контрольным показателям. Так, в период 1 учетной недели на 6,3% (p \leq 0,05), во 2-15,5% (p \leq 0,05), в 3-11,9% (p \leq 0,05), в последнюю учетную неделю разница составила 5,1% (p \leq 0,05).

Среднесуточный прирост живой массы птицы за период исследования приведен в таблице 5.

Из табличных данных исходит, что уровень среднесуточного прироста живой массы цыплят-бройлеров контрольной группы в первую неделю наблюдения был выше, по сравнению с таковыми в I опытной группе на 1 г, во II

Таблица 1. Фактическое потребление корма подопытной птицей, г/гол

Неделя учетного периода	Группа				
	контрольная	I опытная	II опытная	III опытная	
1	453	459	447	400	
2	679	705	670	630	
3	954	964	918	896	
4	1090	1089	1021	1004	
За весь период, в целом	3176	3217	3056	2930	

Таблица 2. Коэффициенты переваримости питательных веществ корма подопытной птицей стартового рациона, %

Группа	Органическое вещество	Сырой протеин	Сырой жир	БЭВ	Сырая клетчатка
Контрольная	74,38±2,28	72,00±2,50	83,16±1,50	77,85±1,97	26,86±6,52
I опытная	77,93±0,83	72,32±1,05	87,66±0,47*	83,73±0,62*	20,02±3,02
II опытная	75,92±0,58	72,77±0,65	86,93±0,31*	80,80±0,46	21,17±1,89
III опытная	72,08±3,29	68,89±3,67	79,87±2,37	78,06±2,59	19,47±6,73

Примечание: *- p <0,05.

Таблица 3. Коэффициенты переваримости питательных веществ корма подопытной птицей ростового рациона, %

Группа	Органическое вещество	Сырой протеин	Сырой жир	БЭВ	Сырая клетчатка
Контрольная	71,63±1,68	79,91±2,63	$79,75\pm1,20$	81,30±1,11	20,80±4,69
I опытная	73,88±6,76	81,04±2,85	81,21±1,34	83,27±1,19	22,43±5,53
II опытная	70,24±2,97	81,61±3,94	75,46±2,45	79,71±2,02	25,71±7,41
III опытная	67,06±1,72	70,44±2,49	78,16±1,14	79,58±1,06	20,11±4,16

Таблица 4. Динамика живой массы цыплят-бройлеров, г

Неделя учетного	Группа			
периода	контрольная	I опытная	II опытная	III опытная
начало опыта	248,4±4,9	245,4±5,3	244,8±4,4	247,8±3,4
1	466,3±13,39	456,3±9,36	440,0±13,28	436,7±14,35*
2	840,3±20,68	838,3±19,74	793,7±28,24	709,7±21,31*
3	1 268,0±31,46	1 254,7±35,10	1 196,0±31,13	1 117,3±28,89*
4	1 641,3±37,79	1 660,3±39,58	1 635,7±41,20	1 557,7±39,98*

Примечания: * – р ≤ 0,05

Таблица 5. Среднесуточный прирост живой массы цыплят-бройлеров за учетный период, г

Неделя учетного	Группа			
периода	контрольная	I опытная	II опытная	III опытная
1	31,1	30,1	27,9	27,0
2	53,4	54,6	50,5	39,0
3	61,1	59,5	57,5	58,2
4	53,3	57,9	62,8	62,9
1–4	49,7	50,5	49,7	46,8

опытной группе — на 3,2 г, в III — на 4,1%. За вторую неделю учетного периода разница в данном показателе у цыплят II и III опытных группах с контролем составила 2,9 и 14,4 г, соответственно.

За третью неделю учетного периода преимущество по показателю среднесуточного прироста птицы также сохранилось у контрольной группы: на 1,6 г, по сравнению с I опытной группой; на 3,6 г — со II опытной группой; на 2,9% — III опытной группой. В последнюю неделю учетного периода, данный показатель во всех опытных группах по отношению к контролю возрос: на 4,6 г в I опытной группе, на 9,5 г во II опытной группе, на 9,6 г в III опытной группе.

В итоге за весь период выращивания среднесуточные приросты в группах отличались незначительно. При этом наибольшим прирост живой массы цыплят-бройлеров наблюдался в I опытной группе — 50,5 г, что превысило уро-

вень в контроле на 1,6%. Самый низкий данный показатель отмечен у птиц III опытной группы – 46.8 г (на 5.8% ниже, чем в контроле).

Таким образом, из полученных данных можно сделать следующие выводы:

- 1. Замена в комбикорме 2,5% пшеницы на лузгу какао приводит к повышению переваримости сырого жира на 1,2–4,5% и БЭВ на 2,0–5,9%, поедаемости кормов на 1,2% и среднесуточного привеса на 0,8 г/сутки.
- 2. Замена 5% зерновой части рациона на лузгу какао сопровождается снижением поедаемости корма на 3,8%, не оказывая влияния на среднесуточный привес.
- 3. При введении в рацион 7,5% какаовеллы проявляется небольшой отрицательный эффект, который выражается в снижении средне среднесуточного прироста на 5,8% относительно контроля

10.04.2014

Список литературы:

Сведения об авторах:

Медведев Сергей Анатольевич, соискатель Института биоэлементологии Оренбургского государственного университета

Нестеров Дмитрий Васильевич, научный сотрудник Института биоэлементологии Оренбургского государственного университета, кандидат биологических наук

Сипайлова Ольга Юрьевна, научный сотрудник Института биоэлементологии Оренбургского государственного университета, кандидат биологических наук

Шейда Елена Владимировна, научный сотрудник Института биоэлементологии Оренбургского государственного университета, кандидат биологических наук

460352, Россия, г. Оренбург, пр. Победы, 13, e-mail: inst bioelement@mail.ru; тел. 8(3532)372482

^{1.} Научные основы кормления сельскохозяйственной птицы: В.А. Фисинин, И.А. Егоров, Т.М. Околелова и др. – Всерос. науч.-исслед. и технол. ин-т птицеводства. – Сергиев Посад: ВНИТИП, 2008. – 351 с.

^{2.} Холодилина Т.Н. Эффективность применения различных технологий подготовки лузги гречихи к использованию в рационах животных и птиц/Т.Н. Холодилина // диссертация на соискание ученой степени кандидата сельскохозяйственных наук. — Оренбург, 2006. — 141 с.

^{3.} Холодилина Т.Н. Исследование возможностей повышения питательной ценности гречневой лузги/ Т.Н, Холодилина, С.В. Антимонов, В.П Ханин.// Вестник Оренбургского государственного университета. − 2004. − №10 (112). − С. 153-156.

^{4.} Нестеров, Д.В. Влияние обработки пищевого волокна на сорбцию токсичных элементов в эксперименте / Д.В. Нестеров, О.Ю. Сипайлова, С.В. Лебедев// Формування конкурентоспроможноі економіки: теоретичні, методичні та практичні засади: матеріали ІІ міжнар. Наук.-практ. Інтернет-конф. 21-22 березн. 2013 р. — Тернопіль: Крок, 2013. — С. 77-79.

^{5.} Нестеров, Д.В. Влияние сульфата и микрочастиц цинка на обмен токсических элементов в костной ткани цыплятбройлеров / Д.В. Нестеров, О.Ю. Сипайлова, С.В. Лебедев // Вестник ОГУ. – 2012. – №6 (142). – С. 176-179.

^{6.} Холодилина Т.Н. Влияние пищевых волокон, подвергнутых различным видам обработки, на обмен химических элементов в организме/ Т.Н. Холодилина, С.А. Медведев // Вестник Оренбургского государственного университета. — 2013. — №6 (155). — С. 24-27.