Канюкова Ю.В.¹, Борщук Е.Л.²

¹Оренбургский филиал МНТК «Микрохирургия глаза» имени академика С.Н. Федорова ² Оренбургская государственная медицинская академия E-mail: nauka@ofmntk.ru

ОРГАНИЗАЦИЯ ВЫСОКОТЕХНОЛОГИЧНОЙ ПОМОЩИ ПАЦИЕНТАМ С САХАРНЫМ ДИАБЕТОМ В ОТДАЛЕННЫХ ТЕРРИТОРИЯХ

Разработана оптимальная организационная схема приближения высокоспециализированной офтальмологической помощи, обеспечивающей раннее диагностическое обследование и своевременное лазерное лечение лиц с сахарным диабетом (СД), путем создания мобильных структур и оценена эффективность ее деятельности. Доказано, что организация четкой системы выявления и лечения диабетической ретинопатии (ДР) должна привести к уменьшению случаев слепоты, что будет выражаться в существенном экономическом эффекте. Предложены четыре организационных модели схемы лечения ДР методом лазеркоагуляции. Созданная в ОФ ФГБУ «МНТК «Микрохирургия глаза» имени акад. С.Н. Федорова» Минздрава России система мобильных структур для улучшения оказания офтальмологической помощи в отдаленных территориях региона, по современным технологиям прошла всестороннее испытание, внедрена и приносит свои положительные результаты.

Ключевые слова: Caxарный диабет, скрининг, медицинская технология, мобильные структуры, лазерное лечение.

Введение

Развитие национального проекта «Здоровье» невозможно без разработки принципиально новых высокотехнологичных программ. Среди них, в вопросе повышения качества жизни, определенное место занимает офтальмопатология, коррекция которой требует особого подхода, особенно в отдаленных территориях [7].

Сахарный диабет (СД) и его осложненияодна из важнейших медико-социальных и экономических проблем здравоохранения. В последние десятилетия распространенность СД приобрела характер пандемии, которая охватила практически все государства, и Россия, в этом плане, не исключение [4]. Прослеживается общая закономерность роста заболеваемости СД 1-го типа в направлении от юга к северу континента. Наименьший показатель заболеваемости – в Японии и Израиле, где ежегодно регистрируется не более 6 случаев впервые выявленного СД 1-го типа на 100000 населения. СД 1-го типа чаще встречается у лиц африканского и мексиканского происхождения и достигает 17,9%. По прогнозам Всемирной Организации Здравоохранения число больных СД к 2010 году должно было достигнуть 230 млн., а фактически составило 284 млн. К 2030 году эксперты ВОЗ прогнозируют увеличение до 366 млн. В России СД страдает около 8 млн. человек из них 24,5 тысячи детей и подростков [2], [3]. В структуре заболевания основной удельный вес занимает СД 2-го типа (84–95%), значительно превышая частоту СД 1-го типа (5–16%). Рост заболеваемости СД 2-го типа достигает характера неинфекционной пандемии. В настоящее время 6–8% населения планеты страдают СД 2-го типа, а среди лиц старше 60 лет распространенность заболевания составляет более 20%. У 10% всей популяции отмечается нарушенная толерантность к глюкозе [3], [11]. В Оренбургской области, по данным областного регистра СД на 1 января 2012 года, зарегистрировано и состоит на учете 53299 пациентов с СД. Из них 52902 взрослых, 126 подростков и 271 ребенок.

Диабетическая ретинопатия (ДР) — позднее специфическое осложнение СД — является основной причиной слепоты среди лиц трудоспособного возраста в экономически развитых странах и составляет 80—90% от всей инвалидности по зрению, обусловленной СД [4]. С увеличением продолжительности жизни вероятность увеличения осложнений СД приобретает особую актуальность. Поражение сетчатки при СД занимает особое место, так как существенно влияет на качество жизни больных.

Организация четкой системы выявления и лечения ДР должна привести к уменьшению случаев слепоты, что будет выражаться в существенном экономическом эффекте.

Проблема предотвращения слепоты при СД носит организационный характер и требует:

четкого взаимодействия врачей различных специальностей при ведении больных СД;

- своевременного направления больного к офтальмологу;
- адекватного офтальмологического обследования;
- оценки степени риска прогрессирования и ухудшения зрения;
 - своевременного начала лечения [3], [10].

В первую очередь это касается лиц, живущих в отдаленных территориях, где нет современных методов диагностики и лечения ДР, что и определило необходимость максимально приблизить высокотехнологичную офтальмологическую помощь пациентам, страдающим СД [9]. В связи с этим периодические осмотры глазного дна у этих пациентов должны быть быстрыми, информативными, неинвазивными и эффективными в экономическом плане. Этим требованиям соответствует скрининговое обследование, которое позволяет не только сэкономить время офтальмолога, поскольку выполнять ее могут оптометристы, но и дает объективную информацию о состоянии глазного дна. В процессе скринингового обследования, выявляются группы пациентов, которым требуется дальнейшее периодическое наблюдение (1 раз в год при отсутствии ДР, 2 раза в год при наличии непролиферативной ДР), а также пациенты, нуждающиеся в более глубоком обследовании и лечении в условиях специализированного учреждения. Скрининговое обследование представляет собой оптимальное соотношение стоимость-эффект, и поэтому его необходимо широко использовать в практике по раннему выявлению ДР[1].

Расстояние от конкретных населенных пунктов до высокотехнологичных центров не все-

ОРЕНБУРГ

Рисунок 1. Карта центров дислокации мобильных структур

гда одинаково, что создает определенные трудности в доступе к современным технологиям.

Цель

Разработать оптимальную организационную схему приближения высокоспециализированной офтальмологической помощи, обеспечивающей раннее диагностическое обследование и своевременное лазерное лечение лиц с СД, путем создания мобильных структур и провести оценку эффективности ее деятельности.

Материалы и методы

Плотность городского и сельского населения в Оренбургской области неравномерная и концентрируется вокруг городов: Оренбурга, Орска (территория Новотроицка совмещена с Орском), Бузулука и Бугуруслана. Нами выделены четыре центра наибольшей концентрации населения, для последующей дислокации в них мобильных структур: Оренбург + 11 районов, Орск + 8 районов, Бузулук + 8 районов, Бугуруслан + 6 районов (рис. 1).

Практика показала, что в каждом населенном пункте количество пациентов не бесконечно и развертывать длительно существующую структуру смысла нет. Состав выездной бригады: врач отделения лазерной хирургии, медицинская сестра отделения лазерной хирургии, оптометрист, инженер-медтехник. Для обеспечения скринингового обследования, а именно: сбора анамнеза, уточнения характера зрительных расстройств, визометрии, тонометрии, биомикроскопии переднего и заднего отделов глаза, гониоскопии, фотографирования глазного

дна; мы вывозили следующее оборудование: щелевую лампу, набор контактных линз для исследования сетчатки (трехзеркальная линза Гольдмана, широкопольная фундус-линза), бесконтактный тонометр, ручную фундус-камеру для фотографирования глазного дна, лазерный коагулятор с длиной волны 532 нм («ALCON»), а также набор медикаментов для достижения медикаментозного мидриаза. Совместно с кафедрой медико-биологической техники Оренбургского государственного университета проведена работа по разработке специальных контейнеров и способов транспортировки лазерного оборудования на значительные расстояния до 300-500 км. Перед выездом проводились расчеты расстояния (в км) от центра до конкретного населенного пункта; стоимости проезда (в руб.) от района до ближайшего центра и до Оренбурга; расчет времени пути с учетом вида транспорта и характера покрытия дорог. Предварительный отбор пациентов и сбор их в месте дислокации выездной бригады осуществлялся силами местного офтальмолога и эндокринолога. В процессе скринингового обследования формировалось несколько групп пациентов:

- 1 нуждающихся в диспансерном наблюдении;
- 2 нуждающихся в лазерном лечении (панретинальной коагуляции);
- 3 нуждающихся в витреоретинальной хирургии.

При постановке диагноза использована классификация ДР по ETDRS (Early Treatment Diabetic Retinopathy Study Researt Group) [6], [12].

Пациентам первой группы давалась подробная информация о необходимости периодического наблюдения и своевременного лазерного лечения. Пациентам второй группы выполнялась панретинальная коагуляция на месте (1 этап —до 1000 коагулятов), пациенты третьей группы направлялись в областной центр для проведения витреоретинальной хирургии.

Для предложенной организационной схемы лечения ДР методом лазерной коагуляции с выездом в четыре центра (Оренбург, Орск, Бузулук, Бугуруслан) разработана математическая модель, позволяющая прогнозировать основные показатели лечебного процесса (число пролеченных больных и затраты, связанные с процессом лечения). В основу математической модели решаемой задачи положен метод линейного программирования (транспортная задача с ограничениями).

Рассмотрено четыре организационных модели схемы лечения ДР методом лазеркоагуляции [5], [8].

Первая модель исходила из того, что МНТК направляет бригады в 4 города, определенных как центры лазеркоагуляции со своим оборудованием и производит диагностику и лечение заранее подготовленных пациентов с ДР.

Затратные составляющие модели:

- для муниципалитета отсутствуют (точнее она равна аренде помещения на 3–5 дней);
- для пациентов затраты на проезд до города-центра лазеркоагуляции (Оренбург, Орск, Бузулук, Бугуруслан);
- для МНТК все расходы, связанные с лечением больных (рис. 2).

Результаты моделирования сравнивались с другими организационными схемами лечения ДР методом лазеркоагуляции.

Во второй модели предполагалось, что указанные города приобретают аппаратуру для лечения ДР методом лазеркоагуляции и, таким образом, организуют стационарные центры лазеркоагуляции в четырех крупных городах.

Затратные составляющие модели:

- для 4-х муниципалитетов приобретение 4-х аппаратов (лазеркоагуляторов); затраты на подготовку персонала, получение лицензии на лечение данным методом;
- для пациентов затраты как и в первой модели;
- для МНТК нет прямых затрат, оказание консультативной помощи (рис. 3).

Третья организационная схема предусматривает лечение больных в г. Оренбурге (на базе МНТК).

Затратные составляющие модели:

- для муниципалитета нет затрат;
- для пациентов затраты на проезд и проживание в г. Оренбурге;
- для МНТК обычные затраты в рамках существующего на данный момент финансирования (рис. 4).

Четвертая организационная схема (для сравнения с первой основной схемой) предусматривала организацию стационарных центров лазеркоагуляции в каждом муниципальном образовании.

Затратные составляющие модели:

- для муниципалитетов приобретение лазеркоагуляторов; затраты на подготовку персонала, получение лицензии на лечение данным методом;
- для МНТК нет прямых затрат, оказание консультативной помощи (рис.5).

Результаты и обсуждения

Все четыре модели рассчитывались с прогнозом на 24 месяца работы указанных цент-

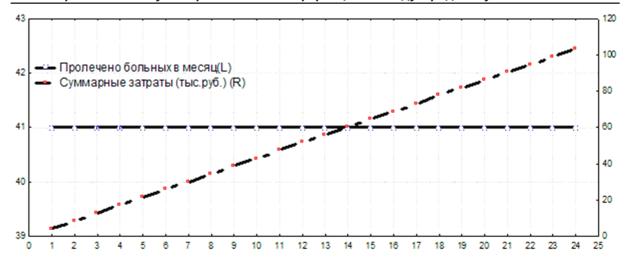


Рисунок 2. Результаты по первой модели. Динамика суммарных затрат (тыс. руб.) – правая вертикальная ось; число пролеченных больных в месяц – левая вертикальная ось

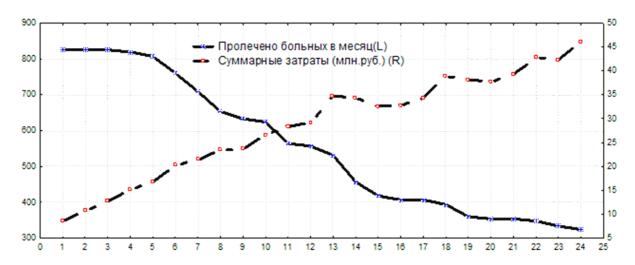


Рисунок 3. Результаты по второй модели. Динамика суммарных затрат (млн. руб.) – правая вертикальная ось; число пролеченных больных в месяц – левая вертикальная ось

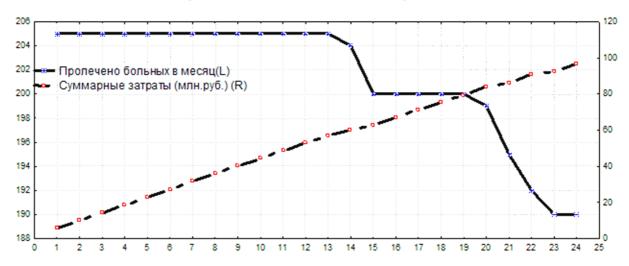


Рисунок 4. Результаты по третьей модели. Динамика суммарных затрат (млн. руб.) – правая вертикальная ось; число пролеченных больных в месяц – левая вертикальная ось

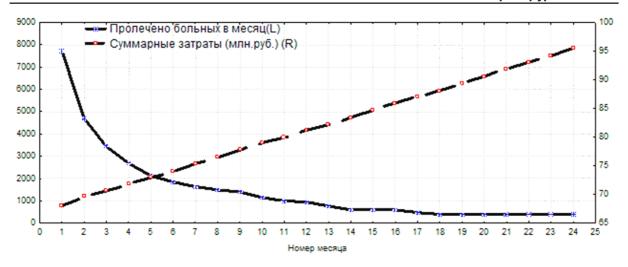


Рисунок 5. Результаты по четвертой модели. Динамика суммарных затрат (млн. руб.) – правая вертикальная ось; число пролеченных больных в месяц – левая вертикальная ось

Таблица 1. Основные количественные показатели, даваемые каждой из рассмотренных моделей

Показатель	1-я модель	2-я модель	3-я модель	4-я модель
Общие затраты на лечение больных (тыс.руб.)	1292	690728	1278284	1962900
Общее число пролеченных больных	984	13289	4835	36002
Средние затраты на лечение одного больного (руб.)	1312.80	51977.39	264381.45	54521.97

ров. Ниже приведены основные количественные показатели, полученные в каждой из рассмотренных моделей (табл. 1).

Приведенные количественные показатели моделей позволяют сделать вывод о том, что предлагаемая организационная схема лечения ДР методом лазеркоагуляции (1-я модель) в 40 раз экономичнее второй и четвертой, и в 200 раз экономичнее третьей модели. Однако, по числу пролеченных больных первая модель уступает в пять раз третьей модели, в 13 развторой модели и в 37 раз – четвертой модели.

Выводы

Разработанный алгоритм раннего выявления ДР у жителей отдаленных территорий позволил своевременно оказывать высокотехнологичную помощь инвалидам по зрению, которые ранее считались социально нетранспортабельными, а также осуществлять своевременную диспансеризацию пациентов с СД, что особенно актуально, для отдаленных от областного центра районов, а реализуемые модели 1и 3 организационных схем:

- подтверждают высокую экономическую эффективность предлагаемой организационной схемы лечения;
- свидетельствуют о необходимости увеличения объемов пролеченных больных по предлагаемой организационной схеме лечения ДР методом лазеркоагуляции с обеспечением соответствующего увеличения финансирования указанного проекта за счет средств OMC.

3.10.2014

Список литературы:

^{1.} Астахов, Ю.С. Диабетологические центры-новый этап в создании специализированной помощи больным с диабетической ретинопатией / Ю.С. Астахов, Ф.Е. Шадричев // Клиническая медицина. – 2001. – Т.2. –№4. – С. 148–153. 2. Балашевич, Л.И. Диабетическая офтальмопатия / Л.И. Балашевич, А.С. Измайлов. – СПб: Изд. «Человек», 2012. – 392 с.

^{3.} Балашевич, Л.И. Глазные проявления сахарного диабета / Л.И. Балашевич.— СПб: изд. Дом МАПО, 2004. — 392 с. 4. Дедов, И.И. Сахарный диабет в России: проблемы и решения / И.И. Дедов, М.В. Шестакова. Ю.И. Сунцов. — М: 2008. — С. 3.

^{5.} Екимов, А.К. Математическое моделирование: основа экономического прогнозирования системы здравоохранения города / А.К. Екимов, В.В. Дрошнев // Экономика здравоохранения. – 7,8/39. – 1999. – С. 43–45. 6. Измайлов, А.С. Клиническая классификация диабетической макулопатии / А.С. Измайлов, Л.И. Балашевич // Офталь-

мохирургия и терапия. – 2003. – Т.З. – №1–2. – С. 42–45.

^{7.} Канюков, В.Н. Мобильные структуры в офтальмологии / В.Н. Канюков. – Оренбург: изд. ОГУ, 1999. – 176 с.

XXV Всероссийская научно-практическая конференция с международным участием

- 8. Канюков, В.Н. Использование методов моделирования для выработки оптимального экономического поведения офтальмологического центра / В.Н. Канюков, В.Н. Афанасьев, А.К. Екимов // Современные информационные технологии в науке, образовании и практике. Материалы региональной научно-практической конференции. Оренбург, ИПК ОГУ, 2002.— С. 336—344.
- 9. Канюкова, Ю.В. Организация лазерного лечения диабетической ретинопатии в отдаленных территориях / Ю.В. Канюкова, А.Н. Узенева // Сб. науч. работ «Актуальные проблемы офтальмологии»; под ред. Х.П.Тахчиди. М., 2008. С. 287—289. 10. Сапрыкин, П.И. Лазеры в офтальмологии / П.И. Сапрыкин. Саратов: Изд-во «Саратовский университет», 1982. 188 с. 11. Дислипидемия и диабетическая ретинопатия / Ф.Е. Шадричев [и др.] // Офтальмологические ведомости. 2009. Т. 2. —

 $N_04 - C_131-42$

12. Уоткинс, П.Дж. Сахарный диабет / П.Дж. Уоткинс. – 2006. – 134 с.

13. The Diabetic Retinopathy Study Research Group, report number 2. Photocoagulation treatment of proliferative diabetic retinopathy // Ophthalmology. − 1978. − Vol.85, №1. − P. 82−106.

Сведения об авторах:

Канюкова Юлия Владимировна, заведующая отделением лазерной хирургии Оренбургского филиала МНТК «Микрохирургия глаза» имени акад. С.Н. Федорова Минздрава России

Борщук Евгений Леонидович, заведующий кафедрой Общественного здоровья и здравоохранения №1 Оренбургской государственной медицинской академии, доктор медицинских наук, профессор