Каменев С.В., Лапынина М.Ю., Фот А.П., Чепасов В.И.

Оренбургский государственный университет E-mail: kamenev_sergey@mail.ru

НАПРЯЖЁННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ ПЛАСТИН ЗВЕНЬЕВ ПРИВОДНЫХ РОЛИКОВЫХ ЦЕПЕЙ

Статья посвящена оценке напряженно-деформированного состояния пластин звеньев приводных роликовых цепей и определению рациональной формы и размеров пластин. Ключевые слова: приводная роликовая цепь, звено цепи, пластина звена, напряжённо-деформированное состояние пластины.

Профессор Воробьёв Н.В. в своей монографии [1] по цепным передачам отмечает, что «...Излишне большой вес цепей вызывает дополнительный шум, оказывает отрицательное влияние на износ шарниров и увеличивает динамические нагрузки, действующие на цепь в процессе ее работы, особенно при высоких скоростях. В связи с этим постоянно необходимо стремиться к всемерному снижению веса цепей с обеспечением предусмотренных стандартом разрушающих нагрузок...» и, далее, «...Качество цепи можно характеризовать также условной удельной нагрузкой, т. е. разрушающей нагрузкой цепи, отнесенной к ее весу q ... » (под q подразумевается вес погонного метра цепи, кг/м). Согласно данным [1] на момент издания работы наиболее высокими показателями удельной нагрузки отличались цепи немецкой фирмы Випперманн, японских фирм ИЦУМИ и ЦУБАКИ н английской фирмы Ренольд.

Анализ параметров отечественных цепей по ГОСТ 13568-97 [2], отдельные результаты которого представлены в работе [3], позволил установить, что среднее значение удельной разрушающей нагрузки (УРН) для однорядных цепей типа ПР составляет 24,07 кН/кг/м, причём для цепей различного шага t значения УРН заметно отличаются (табл.1):

В идеальном случае, с точки зрения рационального использования металла в цепи (при одинаковых значениях механических характеристик), значения УРН для цепей различного шага должны быть одинаковыми. Но, как видно из данных табл.1, различия в значениях УРН достигают 25,5% (минимальное значение 20,81 кН/кг/м для цепи с шагом 9,525 мм, максимальное усреднённое 26,12 кН/кг/м - для модификаций цепи с шагом 12,7 мм). Наибольшее значение УРН, равное 33,33 кН/кг/м, в роликовых цепях установлено для цепи ПР-12,7-10-1. Учитывая, что ГОСТ 13568-97 не предусматривает использование различных материалов и различной термообработки для цепей различного шага, можно предположить, что различия в значениях УРН обусловлены соотношениями геометрических размеров элементов звеньев цепей (пластин, втулок и валиков) и напряжённо-деформированным состоянием (НДС) этих элементов.

Профессор Воробьёв Н.В. отмечает также, что при испытаниях на усталостную прочность «...цепи разрушались как по проушинам и перемычкам, так и по валикам. Однако в большинстве случаев цепи разрушались по пластинам внутренних звеньев, что указывает на отсутствие равнопрочности элементов...» [1], что подтверждает необходимость исследования НДС пластин цепей и влияния на него соотношений геометрических размеров элементов звеньев цепей. В этом плане представляют интерес результаты работы [4], авторы которой исследовали НДС пластин зубчатых цепей ПЗ-1 и ПЗМ-1 по ГОСТ 13552-81, пластин роликовых цепей по ГОСТ 13568-75 и ГОСТ 21836-76 и пластин цепей типа ПРМС [5] с использованием метода конечных элементов (МКЭ). К сожалению, вопрос оптимизации размеров пластин приводных роликовых цепей в работе [4] раскрыт лишь частично.

Таблица 1. Усреднённые значения УРН для однорядных цепей типа ПР

Шаг цепи, t, мм	8,0	9,525	12,7	15,875	19,05	25,4	31,75	38,1
Удельная разрушающая нагрузка, УРН, кН/кг/м	23,00	20,81	26,12	24,99	20,85	22,40	23,99	23,09

Для тяговых цепей вопрос более подробно освещён в работе [9].

Благодаря развитию программного обеспечения в части реализации МКЭ появилась возможность оценки НДС элементов цепей более обосновано, моделируя цепь как систему звеньев и собственно звено цепи как систему его деталей и учитывая взаимодействие всех элементов названных систем.

Исходная посылка – НДС пластин цепей различного шага должно быть идентичным, причём (при одинаковых значениях механических характеристик материалов деталей звеньев цепей) зависит только от соотношения геометрических размеров пластин и сопряжённых деталей (валиков и втулок). Должно быть учтено, что втулки и валики установлены в пластинах с гарантированным натягом, причём диаметры d_{рт} втулок и d_р валиков соответствуют стандартным значениям и в эксперименте не изменяются. Варьируемыми параметрами являются ширина b пластины (радиус R округлений пластины), наименьшая ширина b, пластины в месте сужения (радиус R₁ выкружки контура пластины) и толщина д пластины (рис.1).

На первом этапе было исследовано влияние соотношения размеров пластин на картину напряжённо-деформированного состояния (описано далее), затем реализован машинный эксперимент на пластинах цепей нескольких заводов-изготовителей.

Учитывая небольшое количество варьируемых параметров (всего 3), решено было провести многофакторный эксперимент для пластин внутреннего и наружного звеньев цепи каждого шага (в качестве базовых для эксперимента ис-

Рисунок 1. Пластина роликовой цепи

пользованы однорядные цепи ПР-12,7-18,2-1 и ПР-15,875-23–завод А и ПР-19,05-31,8–завод Б).

Рассмотрим более подробно характеристики цепей ПР-12,7-18,2-1 и ПР-19,05-31,8, учитывая, что ГОСТ 13568-97 устанавливает для цепей ПР-12,7-18,2-1 и ПР-19,05-31,8 существенно отличающиеся значения разрушающих нагрузок 18,2 и 31,8 кН и веса погонного метра цепи 0,75 и 1,9 кг/м, определяющих значения УРН, равные 24,27 и 16,74 кН/(кг/м) соответственно.

По чертежам цепей упомянутых заводовизготовителей фактические веса погонного метра цепей равны 0,706 кг/м для цепи ПР-12,7-18,2-1 и 1,472 кг/м для цепи ПР-19,05-31,8 (меньше стандартных значений на 5,87% и 22,53% соответственно), что, при подтверждаемых изготовителями стандартных значениях разрушающих нагрузок, определяет значения УРН в 25,78 и 21,60 кН/(кг/м). Максимальные расчётные значения номинальных напряжений в сечениях проушин пластин (сечение по оси отверстия в пластине под втулку либо валик шарнира), соответствующие разрушающим нагрузкам, равны соответственно 1101 МПа и 809 МПа (относительно низкий уровень напряжений для цепи ПР-19,05-31,8 может быть вызван несовершенством технологии изготовления пластин этой цепи).

Согласно [2] при испытании цепи «...Образец должен считаться разрушенным в момент, когда приращение его длины не сопровождается повышением нагрузки, т.е. в точке, соответствующей вершине кривой на диаграмме «нагрузка - удлинение»...». Автором [1] установлено, что этот момент соответствует удлинению пластин на (0,005...0,015) t и появлению необратимых пластических деформаций (превышение напряжений предела текучести и разрушения в опасном сечении пластины). Пластины цепи ПР-12,7-18,2-1 изготовлены из Стали 50 (закалка до 45...52 HRCэ, σ_≥930 МПа [6]), а цепи ПР-19,05-31,8 – из Стали 65Г (закалка до 34...46,5 HRCэ, σ_x≥ 1230 МПа [6]). Учитывая, что для закалённых сталей предел текучести составляет (08...0.9) временного сопротивления о можно принять разрушающие напряжения о для рассматриваемых пластин равными 1200 МПа.

Согласно рекомендациям [7] был разработан многоуровневый план машинного эксперимента для определения параметров НДС пластин цепей, при реализации которого каждый из варьируемых параметров имел пять уровней в интервале возможных значений (максимальные и минимальные значения интервала определялись по рабочим чертежам деталей звеньев стандартных отечественных и зарубежных цепей). В качестве выходных параметров эксперимента использовались значения номинальных $\sigma_{_{HOM}}$ и максимальных напряжений $\sigma_{_{MAX}}$ в сечениях пластин и значения л продольных упругих деформаций пластин при заданном значении растягивающей цепь нагрузки F_". Конечной целью эксперимента являлось нахождение зависимостей для аналитического определения выходных параметров (напряжений и деформаций) и определение оптимального соотношения значений варьируемых параметров (основных размеров пластин), обеспечивающего наименьший вес пластины при уровне номинальных напряжений в сечениях пластины, не превышающем заданный предел разрушения о материала пластины. Принятые условия:

 $\sigma_{_{\rm HOM}} \leq \sigma_{_{\rm p}}$ и $\lambda \leq [\lambda]$, (1) где $\sigma_{_{\rm p}} = 1200$ МПа; [λ]-допускаемое значение продольных упругих деформаций пластины, $[\lambda] = 0.010 \, \text{t.}$

Для цепей с шагом 12,7 мм интервалы абсолютных значений и уровни варьируемых параметров (определились с учётом данных согласно отечественному и зарубежным европейскому и американскому стандартам): ширина b пластины (радиус R округлений пластины): 9,4...12,10 (4,7...6,05) мм; наименьшая ширина b, пластины в месте сужения (радиус R, выкружки контура пластины):8,2...10,0 (9,88...∞) мм; толщина д пластины: 0,95...1,96 мм.

Для цепей с шагом 19,05 мм интервалы абсолютных значений и уровни варьируемых параметров определились следующими значениями: ширина b пластины (радиус R округлений пластины): 16,2...18,2 (8,1...9,1) мм; наименьшая ширина b₁ пластины в месте сужения (радиус R, выкружки контура пластины):9,4...11,0 (9,8...∞) мм; толщина д пластины: 1,76...3,37 мм.

Учитывая сказанное, были приняты значения b, b, и д на пяти уровнях в полнофакторном машинном эксперименте с определением выходных параметров $\sigma_{_{\rm HOM}},\sigma_{_{\rm Max}}$ и л при растягивающей цепь нагрузке F_р, не нарушающей выполнение условий напряжённо-деформированного состояния по σ_{n} и [λ] в (1) и определяемой при сочетании минимальных значений b и δ (см. табл. 2 и 3):

Значения номинальных напряжений у_{ном} определяли как отношение растягивающей пластину нагрузки F_Dк площади А_{DII} сечения пластины, причём в качестве А_{рп} принималось значение $A_{pn} = (b - d) \cdot \delta$ (здесь d –диаметр отверстия под валик либо втулку в пластине).

По результатам статистической обработки результатов эксперимента были получены зависимости типа (2) для пластин внутренних и наружных звеньев цепи каждого шага:

$$\alpha_{\text{HOM}} = f_1(\mathbf{b}, \mathbf{b}_1, \boldsymbol{\delta}), \boldsymbol{\sigma}_{\text{MAX}} = f_2(\mathbf{b}, \mathbf{b}_1, \boldsymbol{\delta})$$

$$\mu \lambda = f_2(\mathbf{b}, \mathbf{b}_1, \boldsymbol{\delta}).$$
(2)

Далее, используя (2), получили зависимости для определения значений коэффициента б концентрации напряжений, учитывая, что:

$$\alpha_{\sigma} = \sigma_{Max} / \sigma_{HOM}. \tag{3}$$

Определение параметров напряженнодеформированного состояния пластин в каждом эксперименте осуществлялось на основе математического моделирования методом конечных элементов (МКЭ), используемого при решении различных инженерных задач [8], с применением универсальной САЕ-системы «ANSYS». Разработанная для этих целей параметрическая модель представляла собой комбинацию конечно-элементных моделей наружного звена цепи и двух ее внутренних звеньев.

Соединение валика и пластины		Соедине	ние втулки и і	Уровни переменных				
наружного звена		внутреннего звена			параметров (факторов), мм			
Диаметр	Натяг*, мм		Диаметр	Натяг*, мм				
отверстия			отверстия			b	b ₁ **	д
под валик,	Минимум	Максимум	под втулку,	Минимум	Максимум			
d _в , мм			d _{вт} , мм					
	0,051	0,110	6,290	0,031	0,110	9,4000	8,0000	0,9500
						10,1736	9,0152	1,1385
4,340						11,0116	10,2012	1,3646
						11,9186	11,4479	1,6355
						12,9000	12,9000	1,9600

Таблица 2. Параметры для цепи 12,7 мм

При этом модель наружного звена формировалась из двух моделей наружных пластин и двух моделей валиков, связанных с пластинами моделями стыков. Аналогичные модели внутренних звеньев включали в себя модели внутренних пластин, связанные моделями стыков со втулками. Взаимодействие между наружным и внутренним звеньями учитывалось путем моделирования стыков между валиками и втулками, а так же между сопряженными пластинами.

Для построения модели на встроенном языке программирования (APDL) «ANSYS» был предварительно написан специальный сценарий, полностью автоматизирующий процесс формирования модели, процедуру расчета и обработку результатов. При этом процесс моделирования с использованием указанного сценария можно разделить на несколько этапов, в ходе первого из которых производился выбор необходимых типов конечных элементов, формировалась геометрия модели и определялась модель материала. Линейная модель изотропного материала (конструкционная сталь) задавалась двумя параметрами: моду-

лем упругости и коэффициентом Пуассона, соответственно равными 210 ГПа и 0,3.

На втором этапе осуществлялось построение сеточной модели, которая строилась с использованием трех типов квадратичных элементов «Solid185», «Conta173» и «Targe170» избиблиотеки конечных элементов «ANSYS». Первый из них использовался для воспроизведения собственно моделей пластин, валиков и втулок, а пара оставшихся элементов использовалась для моделирования контактного взаимодействия в стыках деталей. Пример, получаемой в итоге сеточной модели, приведен на рис. 2.

Следующий этап был связан с проведением расчетов напряженно-деформированного состояния, которые фактически сводились к решению матричного уравнения вида:

$$[K] \cdot \{u\} = \{F\}, \qquad (4)$$

где [K] – глобальная матрица жесткости конечно-элементной модели;

{u} – вектор узловых перемещений;

{F} – вектор нагрузки.

При этом определение напряженно-деформированного состояния звеньев (в силу специфики решения контактных задач в «ANSYS» производилось) в два шага. На первом из этих шагов выполнялся расчет напряжений, возникающих в пластинах под воздействием натяга в стыках пластин с валиками и втулками, а на втором шаге – расчет напряжений, возникающих под воздействием силы натяжения цепи и суммирующихся с напряжениями натяга.

Рисунок 2. Сеточная модель звеньев роликовой цепи

Таблица З.	Параметры для цепи	19,05	ММ
------------	--------------------	-------	----

Соединение валика и пластины			Соедине	ние втулки и	пластины	Уровни переменных параметров		
наружного звена		внутреннего звена			(факторов), мм			
Диаметр	Натяг*, мм		Диаметр	Натяг*, мм				
отверстия			отверстия			h	Ь **	8
под валик,	Минимум	нимум Максимум под вту		Минимум	Максимум	U	\mathbf{U}_1	U
d _в , мм			d _{вт} , мм					
	0,080	0,160		0,060	0,160	14,0000	9,0000	1,7600
						15,1889	10.9044	2,0703
5,800			8,440			16,4797	13,2130	2,4353
						17,8803	16,0103	2,8647
						19,4000	19,4000	3,3700

*) в расчётах использованы максимальные значения натяга

**) во всех из 250 возможных сочетаний b, b_1 и δ в экспериментах для цепи заданного шага, в которых b_1 могло быть больше b, принималось b_1 =b.

Технические науки

Величины натяга во всех случаях расчета принимались по рабочим чертежам цепей и имели одинаковое значение для пластин одного шага, независимо от их остальных геометрических размеров. Векторы нагрузки, имитирующей силу натяжения цепи (F), задавались в направлении оси X на свободных цилиндрических поверхностях валиков в моделях внутренних звеньев, и распределялась по узлам модели в соответствии с законом косинуса.

Для стабилизации модели при проведении расчета под действием силовой нагрузки задавались нулевые степени подвижности по координате Y в опорных узлах моделей наружных пластин и нулевые степени подвижности по координате Z в узлах втулок, лежащих в плоскости симметрии модели, параллельной координатной плоскости XOY.

На завершающем этапе моделирования производилась обработка полученных результатов и подготовка массивов данных, необходимых для установления функциональных зависимостей напряжений и деформаций в пластинах от их геометрических размеров.

Проведенные расчеты позволили установить качественную картину напряженно-деформированного состояния элементов цепи, которая подтверждает сложный характер деформаций, соответствующий схеме, предложенной в работе [1] и полученной авторами [10]. В качестве примера на рис. 3 приведено распределение суммарных деформаций (в метрах), возникающих под действием растягивающей нагрузки в элементах стандартной приводной цепи с шагом 12,7 мм.

Подтверждается картина напряжённого состояния сечений пластины с локализацией максимальных напряжений вблизи вертикальной оси отверстия под валик (втулку) шарнира (рис. 4 и 5).

Достаточно чётко определяется картина деформаций пластины под действием растягивающей силы (рис. 6).

Чем больше радиус выкружки г₁ пластины внутреннего звена, тем меньше уровень максимальных напряжений (рис. 7), которые снижаются и при уменьшении ширины пластины.

Аналогичная картина выявлена и для пластин наружных звеньев (рис. 8).

По результатам машинного эксперимента для цепей с шагами 12,7 мм, 15,875 мм и 19,05 мм были

получены искомые зависимости (2) и (3) и конкретные условия (1) для каждой цепи (табл. 4).

Были найдены значения расчётной силы F_n разрыва пластин (по условиям (1)) и коэф-

.626е-05 .134е-04 .206е-04 .278е-04 .349е-04 Рисунок 6. Деформации в пластине

наружного звена цепи при заданном соотношении значений радиуса округления пластины г и радиуса выкружки г, (в сужении пластины) к значению диаметра отверстия d под валик

Каменев С.В. и др.

Напряжённо-деформированное состояние пластин звеньев...

фициентов концентрации напряжений α_σ (табл. 5, пример для двух шагов цепей, обозначено F_{рвп} и F_{рнп} – значения сил нагружения пластин внутреннего и наружного звеньев соответственно)

Как видно, с точки зрения усталостной

прочности, более рациональными являются со-

четания размеров пластин внутренних звеньев, наиболее удачным – сочетание размеров для

Рисунок 7. Поверхность максимальных напряжений во внутренней пластине под действием растягивающей нагрузки

Рисунок 8. Поверхность максимальных напряжений в наружной пластине под действием растягивающей нагрузки

Габлица 4. Зависимости для	расчета	параметров	НДС пластины
----------------------------	---------	------------	--------------

Параметр НДС пластины	Тип	Интервалы числовых значений коэффициентов и показателей степени при переменных в зависимостях: $\lambda = AF_{pn} b^X b_1^{Y}?^Z;$ $\sigma_{max} = AF_{pn} b^X b_1^{Y}?^Z;$ $\alpha_{\sigma} = A b^X b_1^{Y}?^Z$					
		А	Х	Y	Z		
Продольная деформация, λ, мкм	ΒП	0,3390,530	-0,8541,169	-0,3440,444	-0,7150,889		
	ΗП	0,0600,072	-0,4570,587	-0,2070,275	-0,5220,750		
Максимальное	ΒП	11,74021,277	-0,9761,260	-0,3010,354	-0,8420,995		
напряжение, σ _{max} , МПа	ΗП	1,3283,362	-0,4830,687	-0,0680,116	-0,5690,796		
Коэффициент концентрации напряжений α _σ	ΒП	0,2830,463	0,9831,114	-0,3010,354	0,0050,158		
	ΗΠ	0,1830,416	0,9731,067	-0,0680,114	0,2040,431		

Таблица 5. Разрушающая нагрузка F_p и коэффициент концентрации α_σ

Цепь							
	ПР-12,7-18,	ПР-19,05-31,8					
	Пластина		Пластина				
	ВП НП ВП НП			НП			
Сила разрыва пластины F _{рвп} , кН	Коэф. концентр. напряжений α _σ	Сила разрыва пластины F _{рвп} , кН	Коэф. концентр. напряжений α _σ	Сила разрыва пластины F _{рвп} , кН	Коэф. концентр. напряжений α _σ	Сила разрыва пластины F _{рвп} , кН	Коэф. концентр. напряжений α _σ
9,8155	2,5889	10,1945	3,5458	24,337	3,1016	23,754	3,8361
	F _p =19,63 H		$F_{p} = 47$,51 кН			

Технические науки

1 (значение коэффициента концентрации напряжений α_ равно 2, 5889).

Таким образом, размерные параметры цепей обоих заводов - изготовителей могут обеспечить более высокие нагрузочные характеристики по сравнению с указанными в ГОСТ 13568-97.

Результаты анализа опубликованных работ позволяют сделать вывод о возможности оценки статической прочности приводных роликовых цепей уровнем удельной разрушающей нагрузки, определяемой отношением значения разрушающей нагрузки цепи к весу одного метрацепи. В существующих отечественных и зарубежных цепях значения данного показателя изменяются в широких пределах, что говорит об отсутствии единого подхода в определении размеров деталей звеньев цепей, определяющих напряжённо-деформированное состояние деталей, в первую очередь - пластин звеньев цепей.

Напряжённо-деформированное состояние деталей цепи, являющейся достаточно сложной конструкцией, должно оцениваться во взаимодействии деталей звеньев, что определяет необходимость использования современных методов моделирования и проведения машинного эксперимента с использованием ЭВМ и расчётов методом конечных элементов (МКЭ), используемого при решении различных инженерных задач.

Результаты машинных экспериментов по оценке напряжённо-деформированного состояния пластин звеньев цепи подтверждают сложный характер взаимодействия пластин и сопряжённых с ними деталей и неравномерность полей напряжений и деформаций в сечениях пластин, причём максимальная концентрация напряжений определяется в области ослабленного отверстием сечения пластины. Уровень максимальных напряжений в пластине зависит от шага цепи, типа пластины (пластина внутреннего либо наружного звена), формы пластины («восьмёрка» либо пластина с прямыми гранями) и соотношения основных размеров – наибольшей ширины пластины, наименьшей ширины пластины и толщины пластины.

11.12.2013

Список литературы:

7. Грачёв, Ю.П. Математические методы планирования экспериментов. – М.: Пищевая промышленность, 1979.-200 с.

 Норри Д., де Фриз Ж. Введение в метод конечных элементов: Пер. с англ. — М.: Мир, 1981. – 304 с.
Ивашков, И.И. Пластинчатые цепи. Конструирование и расчёт / И.И.Ивашков. – М.: ГНТИ машиностроительной литературы, 1960. – 264 с.

10. Static Stress Analysis of Link Plate of Roller Chain using Finite Element Method and Some Design Proposals for Weight Saving / Shoji NOGUCHI, Kohta NAGASAKI, Satoshi NAKAYAMA, Tohru KANADA, Toshiaki NISHINO and Takashi OHTANI Journal of Advanced Mechanical Design, Systems, and Manufacturing. - 2009. - Vol. 3.-№2.- P.150-170 [DOI: 10.1299/ jamdsm.3.159].

Сведения об авторе:

Каменев Сергей Владимирович, доцент кафедры технологии машиностроения,

металлообрабатывающих станков и комплексов Оренбургского государственного университета, кандидат технических наук, e-mail: kamenev sergey@mail.ru

Лапынина Марина Юрьевна, аспирант Оренбургского государственного университета,

e-mail: marina lap84@mail.ru

Фот Андрей Петрович, главный ученый секретарь Оренбургского государственного университета, доктор технических наук, профессор, e-mail: fot@mail.osu.ru

Чепасов Валерий Иванович, заведующий кафедрой информационных систем и технологий

Оренбургского государственного университета, доктор технических наук, профессор,

e-mail: ist@unpk.osu.ru

460018, г. Оренбург, пр-т Победы, 13

^{1.}Воробьев, Н.В. Цепные передачи: монография / Н.В. Воробьев. – М.: Машиностроение, 1968. – 262 с.

^{2.}ГОСТ 13568-97. Цепи приводные роликовые и втулочные. Общие технические условия. – М.: Изд-во стандартов, 1975. – 21 c.

^{3.}Фот, А.П. Оценка конструктивно-технологического совершенства приводных цепей / А.П.Фот // Вестник ОГУ. – 2012. –

^{№ 1. –} С. 197–199. 4.Тарабасов, Н.Д. Цепные муфты. Проектирование, изготовление и эксплуатация: Справочник / Н.Д. Тарабасов, П.Н. Учаев. – М.: Машиностроение. – 1987. – 256 с.

^{5.}Фот, А.П. Новая конструкция пластинчатой цепи / А.П. Фот, П.Н. Учаев, К.П. Жуков, В.П. Ковалевский // Вестник машиностроения. - 1982. - № 3. - С.40-41.

^{6.} Анурьев, В.И. Справочник конструктора-машиностроителя: В 3-х т. – Т.1.– 8-е изд., перераб. и доп.– М.: Машиностроение, 2001.-920 с.