## Крылова С.Е.

Орский гуманитарно-технологический институт (филиал) Оренбургского государственного университета E-mail: krilova27@yandex.ru

## ПРИМЕНЕНИЕ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ДЛЯ СИНТЕЗА ЭКОНОМНОЛЕГИРОВАННЫХ СТАЛЕЙ ИНСТРУМЕНТАЛЬНОГО КЛАССА

Методами математического планирования получены и исследованы опытные экономнолегированные стали 100ХЗГ2МТР, 70ХЗГ2ФТР и 70ХЗГ2ВТБ, предназначенные для изготовления инструмента, работающего в сложных условиях нагружения. Предложены режимы предварительной термической обработки с целью получения оптимального структурного состояния для последующего термического упрочнения. Проведен дилатометрический анализ предложенных сталей, изучены особенности протекания фазовых превращений при непрерывном охлаждении.

Ключевые слова: инструментальные стали, термическая обработка, математическая статистика, микроструктура.

Одна из самых острых проблем современности – создание оптимальных систем легирования, обеспечивающих требуемые свойства сталей. Известно, что наибольшей износостойкостью обладает инструментальная сталь, имеющая после термического упрочнения структуру мелкоигольчатого мартенсита с равномерно распределенными в объеме металла частицами карбидов. Значительный вклад в повышение износостойкости сталей вносят карбиды, твердость которых существенно превышает твердость мартенситной матрицы. Простейший метод улучшения износостойкости увеличение содержания углерода и первичных легированных карбидов. Однако при содержании углерода свыше 0,85% заметно снижается прокаливаемость стали. Если содержание углерода достигает 0,8-0,9%, то мартенситное превращение заканчивается при температуре ниже комнатной и в структуре остаётся некоторое количество остаточного аустенита, снижающего твёрдость закалённой стали.

С точки зрения повышения прочностных свойств важно не только количество углерода и карбидов, но и их благоприятные размеры и характер распределения, поэтому следует выбрать оптимальное количество карбидообразующих элементов [2]. Легировать инструментальные стали целесообразно аустенитообразующими элементами (особенно марганцем, который увеличивает энергию дефектов упаковки), а также сильными карбидообразующими элементами (Cr, W, Ti, Nb), которые измельчают структуру и образуют карбиды следующих типов:  $Fe_3C$ ,  $Mn_3C$ ,  $Fe_3C$ 

ют твердость 950–1050 HV и являются основной упрочняющей фазой экономнолегированных сталей. Кроме перечисленных выше карбидных соединений хром образует специальные карбиды  $Cr_7C_3$ ,  $(Cr, Fe)_7C_3$  и  $Cr_{23}C_6$ , которые относятся к карбидам с высокой твердостью (1600-1800 HV) и наблюдаются в сталях, содержащих 0,8-1% С. Кроме указанных карбидов в структуре сталей подобного типа возможно образование фаз внедрения Мо<sub>2</sub>С и ТіС, обладающих высокой температурой плавления и твердостью. Специальные карбиды выделяются при термическом упрочнении в более дисперсной форме, чем цементит, что обеспечивает дополнительное упрочнение стали и повышенную вязкость металлической основы.

Все вышеуказанные предположения, основанные на теоретических данных, лабораторных и промышленных испытаниях, послужили основой для последующей разработки опытных сталей инструментального класса путем оптимизации химического состава и структурнофазового состояния.

Проблема разработки экспериментальной экономнолегированной стали решалась с применением методов математической статистики, что позволило получить математические модели и комплексные графические зависимости, отражающие влияние выбранных легирующих элементов на абразивную стойкость, твердость и ударную вязкость литых сталей, а также рассчитать оптимальный химический состав стали, имеющей высокие значения указанных характеристик.

Расчеты проводили для трех экспериментов по 16 опытным сплавам. Выплавку экспе-

риментальных сталей проводили в условиях ОАО МК «ОРМЕТО-ЮУМЗ», в фасонно-литейном цехе №18 на индукционной печи ШТ 0,4/0,32. Шихтовка опытных плавок проводилась на 300 кг из расчета получения требуемого химического состава с учетом угара элементов. В качестве шихтовых материалов использовался лом стальной углеродистый и ферросплавы. Исследованию подвергались образцы сталей, размером 10×10×55 мм, вырезанные из различных частей литой заготовки.

Испытания полученных образцов на абразивную стойкость проводили на экспериментальной установке [2], позволяющей испытывать образцы квадратного сечения различных размеров. В качестве абразива использовали шлифовальный круг диаметром 250 мм марки  $25A25\Pi CM16K20\Pi \Gamma 35A2$  — белый электрокорунд на керамической связке. Термическую обработку проводили в лабораторных печах электросопротивления типа СНОЛ-1 с воздушной атмосферой и в муфельной печи МП-2. Металлографические исследования осуществляли на электронном растровом низковакуумном микроскопе JEOL. JSM.6460LV с волновым и энергодисперсионным анализаторами. Исследования проводили во вторичных электронах, электронах поглощения и рентгеновском характеристическом излучении. Поверхности объекта сканировали при напряжении 25 кВ. Диаметр электронного зонда составлял порядка 1 мкм.

При использовании методов математической статистики для оптимизации химического состава опытных сталей важно правильно выбрать диапазон изменения факторов. Чем уже диапазон, тем проще и точнее обобщенная формула, которая будет получена после обработки результатов эксперимента. Для упрощения графического оформления результатов предпочти-

Таблица 1. Уравнения влияния химического состава на абразивную стойкость литых сталей AC=F (Cr, Mn, Ti, W, Nb, C)

|         | Коррепяции (готовая таблица) |        |        |        |   |       |       |       |  |
|---------|------------------------------|--------|--------|--------|---|-------|-------|-------|--|
| Функция | Уравнение                    | Α      | В      | С      | D | CKAO  | R     | V,%   |  |
| F(%Cr)  | Y=Ax <sup>2</sup> +Bx+C      | 0,070  | -0,170 | -0,170 | - | 0,189 | 0,732 | 0,198 |  |
| F(%Mn)  | Y=Ax <sup>2</sup> +Bx+C      | -0,344 | 1,380  | -1,850 | - | 0,255 | 0,522 | 0,319 |  |
| F(%Ti)  | Y=Ax <sup>2</sup> +Bx+C      | -0,162 | 0,210  | -0,040 | - | 0,188 | 0,72  | 0,070 |  |
| F(%W)   | Y=Ax <sup>2</sup> +Bx+C      | -1,010 | 0,890  | 0,930  | - | 0,203 | 0,7   | 0,320 |  |
| F(%Nb)  | Y=Ae <sup>BX</sup> +C        | 1,060  | -0,490 | -0,910 | - | 0,735 | 0,593 | 0,266 |  |
| F(%C)   | Y=Ax <sup>2</sup> +Bx+C      | -1,410 | 1,490  | 0,830  | - | 0,283 | 0,375 | 0,325 |  |

тельно равномерное возрастание уровней. После выбора интервалов и уровней изменения факторов составлена матрица планирования эксперимента для 6 факторов и 16 наблюдений по каждому эксперименту, отличающемуся микролегирующим комплексом. Легирующие элементы по отношению к углероду располагали в ряд по возрастающей степени сродства к углероду и устойчивости карбидных фаз:  $Fe \to Mn \to Cr \to W \to Nb \to Ti$ . Поэтому при анализе независимые переменные выбирались в соответствующей последовательности [1].

Использование пакета стандартных прикладных программ позволило при ограниченном числе опытов, с меньшим «шагом» планирования получить математические модели, отражающие влияние легирующих элементов на абразивную (АС) стойкость, твердость (НRС) и ударную вязкость (КСU) литых и термически обработанных сталей (табл. 1).

Данные массивы позволяют выявить зависимость между группой факторов (Cr, Mn, Ti, W, Nb, C) и исследуемыми свойствами (AC, KCU, HRC). Для данных таблиц порог уровня значимости (р-уровень) составляет 0,62.

В результате математической обработки, осуществляемой регрессионный статистический анализ данных, исключая незначащие и незначительные факторы удалось получить химический состав и рекомендовать три марки стали, обладающих наилучшим комплексом свойств —  $100X3\Gamma2MTP$ ,  $70X3\Gamma2\PhiTP$  и  $70X3\Gamma2BTБ$ . Плавочный химический состав исследуемых сталей приведен в табл. 2.

Исследование сталей производили в литом состоянии и после проведения горячей ковки. Технология проведения ковки в условиях производства ОАО МК «ОРМЕТО-ЮУМЗ» г. Орск заключалась в ступенчатом нагреве с

печью до температур 400, 850 и 1200 °C со скоростью не более 50 °C/ч и временем выдержки 3, 5 и 8 часов соответственно, горячей пластической деформации при температуре 1200 °C, затем осуществлялась посадка заготовки в печь при температуре 350 °C на 3 часа с дальнейшим ох-

лаждением на спокойном воздухе. Микроструктура сталей в литом состоянии представлена на рисунке 1.

Литая структура сталей 100X3Г2МТР и 70X3Г2ФТР характеризуется ярко выраженным дендритным строением, причем с существенными различиями. В стали 100X3Г2МТР дендриты имеют значительную разветвленность и средний диаметр ветвей около 0,15...0,18 мкм, в то время как в стали 70X3Г2ФТР минимальное сечение дендритов составляет порядка 24...26 мкм. При этом они получили менее разветвленное строение и почти округлую форму. Это объясняется различными условиями отвода тепла и градиентом концентраций перед поверхностью затвердевания, обусловленными различиями как в микролегирующих комплексах, так и в содержании углерода.

Далее была проведена всесторонняя свободная ковка с последующей термической обработкой заготовок, которая должна способствовать устранению карбидной и дендритной ликвации вследствие измельчения, а также выравнивания

химического состава по сечению заготовки (см.  $\rho$ исунок 2).

Результаты замеров твердости и микротвердости исследуемых сталей после ковки и последующего отжига представлены в таблице 3. После ковки заготовки получили пониженную твердость порядка 18—23 HRC. Последующий отжиг при 800 °С привел к увеличению твердости стали 100Х3Г2МТР до 25 HRC, а 70Х3Г2ВТБ до 33 HRC, что можно объяснить более полным переводом легирующих элементов в раствор при нагреве и получение однородной структуры с равномерно распределенными карбидами после охлаждения [3].

Следующим шагом явился выбор оптимальной температуры аустенитизации, обеспечивающей максимально полное растворение карбидов без интенсивного роста аустенитных зерен. С этой целью исследовано влияние температуры аустенитизации на положение мартенситной точки  $M_{\rm H}$ , чувствительной к переходу легирующих элементов в твердый раствор. Образцы нагревались до разных температур

Таблица 2. Химический состав экспериментальных экономнолегированных сталей, % по массе

| Марка стали | С    | Mn   | Si   | P     | S     | Cr   | Ni   | Cu   | Nb    | W    | Al    | Mo   | V    | Ti   |
|-------------|------|------|------|-------|-------|------|------|------|-------|------|-------|------|------|------|
| 100X3Γ2MTP  | 0,90 | 1,94 | 0,65 | 0,021 | 0,011 | 2,87 | 0,07 | 0,06 | _     | _    | 0,041 | 0,48 | _    | 0,43 |
| 70Х3Г2ФТР   | 0,67 | 1,92 | 0,59 | 0,022 | 0,010 | 2,92 | 0,09 | 0,08 | _     | _    | 0,032 | _    | 0,62 | 0,39 |
| 70Х3Г2ВТБ   | 0,64 | 1,90 | 0,61 | 0,023 | 0,012 | 2,85 | 0,10 | 0,12 | 0,055 | 0,35 | 0,048 | _    | _    | 0,46 |

Таблица 3. Твердость (HRC)/микротвердость (H/мм²) экспериментальных сталей после ковки и последующего отжига

|             |             | Отжиг 800 °C (2 часа) |                         |                         |  |  |  |
|-------------|-------------|-----------------------|-------------------------|-------------------------|--|--|--|
| Марка стали | После ковки | печь                  | до 600 °C печь далее на | до 500 °C печь далее на |  |  |  |
|             |             | псчь                  | воздухе                 | воздухе                 |  |  |  |
| 100X3Γ2MTP  | 22,2/2789   | 24,7/3590             | 24,7/3628               | 21/2649                 |  |  |  |
| 70Х3Г2ФТР   | 18/3972     | 21,2/3033             | 21,2/3728               | 17/2692                 |  |  |  |
| 70Х3Г2ВТБ   | 21/3078     | 28,8/4086             | 33/3687                 | 33,2/3155               |  |  |  |

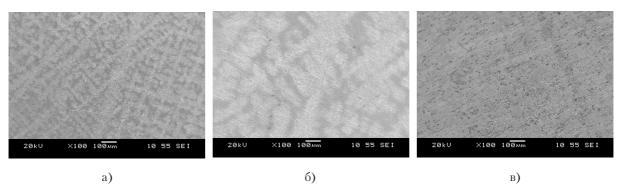



Рисунок 1. Микроструктура экспериментальных сталей в литом состоянии: а - 100X3Г2МТР; 6-70X3Г2ФТР; в -70X3Г2ВТБ

выше  $A_{\rm c3}$ , выдерживались 15 мин. и охлаждались со скоростью  $10\,^{\circ}{\rm C/c}$ , обеспечивающей получение мартенситной структуры (рис. 3, табл. 4).

В стали 70Х3Г2ВТБ повышение температуры аустенитизации слабо влияет на температуру  $M_{\rm H}$  (рис. 4). Вероятно, в интервале температур 900—1100 °С дополнительного растворения карбидов и обогащения твердого раствора легирующими элементами в этой стали не происходит. В двух других сталях наблюдается резкое падение температуры  $M_{\rm H}$  с ростом температуры нагрева под закалку (выше 900 °С — для стали 70Х3Г2ФТР и 950 °С — для стали 100Х3Г2МТР). Наблюдаемое понижение температуры  $M_{\rm H}$  очевидно связано с растворением

карбидов ванадия и молибдена, которые, находясь в твердом растворе, сильно понижают температуру  $M_{\rm H}$ . Некоторое повышение температуры  $1100~{\rm ^{\circ}C}$ , обусловлено началом интенсивного роста зерна аустенита. Исходя из полученных результатов, была выбрана температура аустенитизации, равная  $1000~{\rm ^{\circ}C}$ , обеспечивающая достаточно полное растворение карбидов во всех сталях и не приводящая к резкому росту аустенитных зерен.

Полученные в работе результаты послужат базой для разработки оптимальных режимов термической обработки исследуемых экспериментальных сталей, а также позволят обосно-

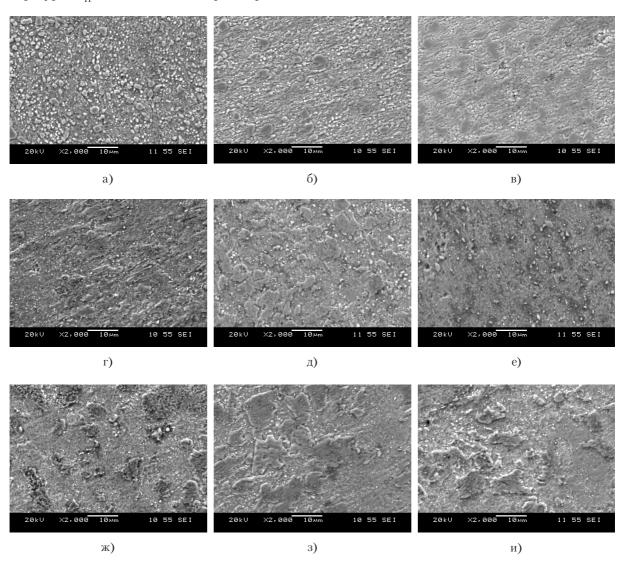



Рисунок 2. Микроструктура экспериментальных сталей после ковки и последующего отжига при температуре  $800\,^{\circ}$ C: а, б, в  $-100\mathrm{X}3\Gamma2\mathrm{MTP}$  охлаждение с печью, до  $600\,^{\circ}$ C с печью далее на воздухе, до  $500\,^{\circ}$ C с печью далее на воздухе; г, д, е  $-70\mathrm{X}3\Gamma2\mathrm{\Phi TP}$  охлаждение с печью, до  $600\,^{\circ}$ C с печью далее на воздухе, до  $500\,^{\circ}$ C с печью далее на воздухе; ж, з, и  $-70\mathrm{X}3\Gamma2\mathrm{BTE}$  охлаждение с печью, до  $600\,^{\circ}$ C с печью далее на воздухе, до  $500\,^{\circ}$ C с печью далее на воздухе до  $500\,^{\circ}$ C с печью далее на воздухе

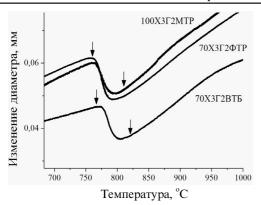



Рисунок 3. Фрагменты дилатограмм исследуемых сталей, полученных в условиях медленного нагрева

Таблица 4. Критические точки исследуемых сталей

| Сталь      | A <sub>c1</sub> , °C | A <sub>c3</sub> , °C |
|------------|----------------------|----------------------|
| 100X3Γ2MTP | 755                  | 805                  |
| 70Х3Г2ФТР  | 760                  | 810                  |
| 70Х3Г2ВТБ  | 765                  | 815                  |

ванно определять области их эффективного использования. В частности, для изготовления валков большого диаметра, подвергающихся закалке с последующим высоким отпуском, может быть рекомендована сталь 70Х3Г2ВТБ, обладающая максимальной прокаливаемостью среди трех рассмотренных сталей.

## Выводы

1. На основе проведённых теоретических и экспериментальных исследований с применением методов математической статистики разработаны новые марки экономнолегированных сталей инструментального класса, включающие микролегирующий комплекс в составе Мо-Ті-

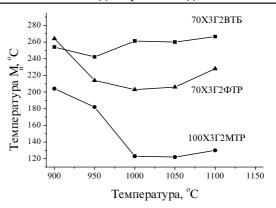



Рисунок 4. Зависимость температуры  $M_{\rm H}$  от температуры аустенитизации

B, V-Ti-B, W-Ti-Nb, обеспечивающий оптимальное сочетание твердости, износостойкости и ударной вязкости металлической основы.

2. В литом состоянии структура экспериментальных сталей характеризуется высокой твердостью (43–55 HRC) и дендритным строением с грубыми включениями тугоплавких карбидных частиц, поэтому на сталях с подобным микролегирующим комплексом необходимо применение пластической деформации и последующего отжига с комбинированным охлаждением.

3. Дилатометрическим анализом определены критические точки экспериментальных сталей, получены температурно-временные интервалы структурных превращений при охлаждении образцов с постоянной скоростью 0,013... 10 °C/с при 1000 °C в течение 15 минут, изучено влияние параметров аустенизации на процессы растворения карбидной фазы при нагреве.

17.01.2013

Список литературы:

## Сведения об авторе:

**Крылова Светлана Евгеньевна,** доцент кафедры материаловедения и технологии металлов, проректор по информатизации Орского гуманитарно-технологического института (филиала) Оренбургского государственного университета, кандидат технических наук 462403, г. Орск, пр-т Мира, 15a, e-mail: krilova27@yandex.ru

<sup>1.</sup> Крылова, С. Е. Влияние термической обработки на формирование структуры экономнолегированных сталей инструментального класса / С. Е. Крылова // Материалы международной научной конференции «Инновационная деятельность предприятий по исследованию, обработке и получению современных конструкционных материалов и сплавов». — М.: Машиностроение, 2009. — С. 410–420.

Крылова, С. Е. Разработка оптимального сплава, обеспечивающего длительную, безаварийную работу оборудования в условиях ударно-абразивного износа / С. Е. Крылова, В. А. Москаленко, В. И. Грызунов // Сталь. – 2005. – № 3. – С. 201–210.
Крылова, С. Е. Изменение структурно-фазового состава в процессе термической обработки микролегированной стали

<sup>3.</sup> Крылова, С. Е. Изменение структурно-фазового состава в процессе термической обработки микролегированной стали 70ХЗГ2ВТБ / Е. Ю. Приймак, Н. Ю. Трякина, С. О. Соколов // ХХ Петербургские чтения по проблемам прочности : сборник материалов. – Ч. 1. – СПб. : Соло, 2012. – С. 100–102.