Урваев Д.Г., Кобзев Г.И.

Оренбургский государственный университет E-mail: denis-1983@list.ru

ИНТЕРМЕДИАТЫ ГАЗОФАЗНОЙ РЕАКЦИИ Sc + O₂: КВАНТОВОХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ

Методами DFT и CASSCF исследованы интермедиаты реакции газофазного окисления атомов скандия молекулярным кислородом. Выявлены неизвестные ранее электронно-возбужденные состояния диоксида OScO и пероксокомплекса скандия Sc(O₂). Показано, что среди рассчитанных состояний интермедиата Sc(O₂), возбужденные состояния с энергией возбуждения 3,16 – 3,46 эВ могут быть отнесены к супероксокомплексам, остальные, с энергией возбуждения менее 3,0 эВ к пероксокомплексам. Детальные расчеты методом MCQDPT2 с поправками на спинорбитальное взаимодействие (SOC) и суперпозиционную ошибку базисного набора (BSSE) предполагают возможность образования Ван-дер-Ваальсового комплекса Sc-O₂ с энергией диссоциации 26,4 см⁻¹.

Ключевые слова: ППЭ, возбужденные оксокомплексы селена, синглетный кислород, спинорбитальное взаимодействие, Ван-дер-Ваальса комплексы

Введение

Исследования реакции взаимодействия Sc + О₂ и возникающих продуктов окисления немногочисленны [1–6]. Газофазная реакция $Sc + O_2 > ScO + O$ в молекулярных пучках идет с незначительным активационным барьером [4]. Чертихин с соавторами, используя технику матричной изоляции, показали, что в продуктах окисления содержатся также молекулы диоксида OScO и оксокомплекса $Sc(O_2)$ [1]. Ву и Вонг, исходя из данных фотоэлектронной спектроскопии, измерили энергии первых трех возбужденных состояний OScO [2]. Квантовохимические расчеты предполагают возможность образования в основном электронном состоянии двух изомеров ScO₂ - изогнутой молекулы OScO и оксокомплекса Sc(O₂) симметрии С₂[1], [3]. Линейная структура ScOO, рассчитанная теоретически [5,6], не обнаружена в ИКспектрах [1] и фотоэлектронных спектрах [2].

В литературе отсутствуют данные о кривых сечений поверхности потенциальной энергии (ППЭ) возбужденных состояний реакции Sc + O₂. Оценка устойчивости ScOO и вычисление активационного барьера изомеризации Sc(O₂) – OScO ранее не проводились.

Методы расчета

Все расчеты выполнены в программных комплексах US-GAMESS [7] и GAMESS Firefly [8] в базисе 6-311++G(2d). Данный базис широко используется при квантовохимических расчетах молекул, в том числе содержащих атомы d-элементов. Выбор подходящего метода основывался на сравнении экспериментальных и теоретических значений геометрической структуры, энергий диссоциации диоксида скандия, активационного барьера газофазной реакции $\text{Sc} + \text{O}_2 \rightarrow$ продукты, фундаментальной частоты связи O-O в оксокомплексе $\text{Sc}(\text{O}_2)$.

Энергии барьеров активации рассчитывались как разность полных энергий минимума электронного состояния и седловой точкой, образованной в результате пересечения с другим состоянием или расположенной на поверхности одного диабатического терма. Эффективные заряды для атомов O ($Z_{_{эф\phi}} = 5.3$) и Sc ($Z_{_{э\phi\phi}} = 9.5$) при расчетах эффектов COB подбирались исходя из экспериментальных значений энергий СОВ этих атомов. Молекулярные орбитали, оптимизированные методом SA-CASSCF, с усреднением по состояниям ³X (${}^{3}Y_{g}^{-}$), а (${}^{1}Д_{g}$), а' (${}^{1}Z'_{g}$) молекулы O_{2} и ${}^{2}X$ (${}^{2}D_{I}$), а (${}^{4}F_{I}$) атома Sc использовались для расчетов моментов электрических дипольных переходов между состояниями со спином S = 1/2, 3/2, 5/2 и соответствующих излучательных коэффициентов Эйнштейна с учетом спин-орбитального взаимодействия.

Обсуждение результатов

Диоксид скандия OScO (C_{2v}). Методы функционала плотности при расчете D_e (OScO > Sc + O_2), дают небольшие расхождения с экспериментальным значением. Энергии возбужденных состояний, рассчитанные методом DFT/UB3LYP, хорошо согласуются с экспериментом и мало отличаются от значений, полученных с использованием TDDFT/ UB3LYP, поэтому расчеты в приближении DFT/UB3LYP должны адекватно описывать расположение электронных термов и области пересечения термов диоксида и пероксокомплекса (рис. 1).

Рассчитанные электронные энергии низколежащих состояний ${}^{2}A_{1}$, ${}^{2}B_{1}$, ${}^{2}A_{2}$, в целом, согласуются с результатами измерений Ву и Вонга [2]. Состояния ${}^{2}B_{2}$ и ${}^{2}A_{1}$ имеют энергию 1,33 – 1.47 эВ и 1,65 – 2,06 эВ, соответственно. Энергии первых 27 возбужденных электронных уровней OScO, рассчитанные методом TD-DFT, составляют менее 5 эВ.

Оксокомплексы Sc(O₂), ScOO. Оксокомплекс скандия в основном состоянии ${}^{2}A_{1}$, согласно расчетам, имеет длины связей R(O-O) в пределах 1.85 – 1.88 Е и R(Sc-O) в пределах 1,48 – 1,55 Е. Данное состояние ${}^{2}A_{1}$ можно отнести к пероксокомплексу или пероксиду скандия, поскольку комплексы со значением поглощения V_{O-O} в интервале 800 – 930 см⁻¹ принято относить к пероксидам [9].

Относительно основного терма диоксида состояние $X^2A_1 Sc(O_2)$ обладает запасом энергии 0,53 – 1,60 эВ. Методы функционала плотности, при расчете значения адиабатической энергии перехода OScO $(X^2B_2) - Sc(O_2) (X^2A_1)$, обладают менышим разбросом, в отличие от методов CASSCF. На наш взгляд значение 1.38 эВ, предсказанное методом B3LYP, вызывает наибольшее доверие.

Возбужденные состояния пероксида скандия $2^{2}A_{2}$, $3^{2}A_{2}$, ${}^{2}B_{2}$ можно отнести к супероксокомплексам, поскольку рассчитанные значения ν_{O-O} лежат в интервале 1209 - 1253 см⁻¹ и значительно выше значений ν_{O-O} для основного $X^{2}A_{1}$ и низколежащих ${}^{2}A_{2}$, ${}^{2}B_{1}$ состояний (884 – 1013 см⁻¹), которые могут быть отнесены к пероксокомплексам.

Рассчитанные энергии активационных барьеров образования пероксокомплекса по реакции $Sc + O_2 > Sc(O_2)$ и изомеризации пероксида в диоксид по реакции $Sc(O_2) > OScO$ приведены в таблице 1. Оба барьера образуются в результате пересечения диабатических термов (рис. 1).

Оксокомплекс скандия ScOO не имеет минимума в основном состоянии согласно расчетам методами DFT и SA-CASSCF. Увеличение значения угла Sc–O–O, при фиксированных R(Sc–O) и R(O–O), сопровождается непрерывным увеличением энергии пероксокомплекса в состояниях ${}^{2}A_{1}$, ${}^{2}B_{1}$, ${}^{2}A_{2}$, ${}^{2}A_{2}$, ${}^{3}A_{2}$ и свидетельствует об отсутствии минимумов состояний ScOO, рассчитанных в работах [5], [6].

Ван-дер-Ваальсов комплекс $Sc-O_2$. Наличие активационного барьера реакции $Sc+O_2 > Sc(O_2)$ свидетельствует о возможности радиационной активации кислорода в Ван-дер-Ваальсовых столкновительных комплексах. Подобные процессы в столкновительных комплексах O_2 с атомами инертных газов [10], [11], селена [12–14], марганца [15] обсуждались в работах [10–15].

Отталкивательные диабатические термы радикальной пары $Sc-O_2$ при более тесном контакте согласно методу CASSCF пересекаются с диабатическими состояниями переноса заряда (СПЗ), соответствующие оксокомплексам $Sc(O_2)$. Переходное состояние, образованное пересечением основного состояния радикальной пары $Sc(^2D)-O_2(^3X)$ состоянием переноса заряда $^4A_2(CП3 Sc^+O_2^{-})$, имеет полную энергию -909,5150 а.е. и межъядерные расстояния $R(Sc-O_1) = 3,1 E$, $R(Sc-O_2) = 4,2 E$. Вандер-Ваальсов комплекс $Sc-O_2^{,2}$ рассчитанный методом MCQDPT2 имеет минимум при R(Sc-O1) = 5,0 E, R(Sc-O2) = 6,1 E с энергией диссоциации $D_2 = 26,4$ см⁻¹.

и оксокомплексов скандия симметрии С_{2V}. Расстояние R(O-O) оптимизировано для каждой точки R(Sc-O₂)

Таблица 1. Активационные барьеры (E_a) реакций образования пероксокомплекса скандия Sc + O₂ > Sc(O₂) и изомеризации Sc(O₂) > OScO, рассчитанные разными методами

Реакция	Эксп. [9]	CASSCF, [6]	SA-CASSCF (11/12)	B3PW91	B3LYP
$Sc + O_2 \rightarrow Sc(O_2)$	0.10	0.19	0.14	0	0
$Sc(O_2) \rightarrow OScO$	—	—	0.63	0.61	0.55

Энергия диссоциации Sc-O₂, рассчитанная без учета суперпозиционной ошибки базисного набора (BSSE) и эффектов спин-орбитального взаимодействия (SOC) составляет 65,8 см⁻¹. Значение суперпозиционной ошибки базисного набора, рассчитанной по теории возмущений для односсылочной волновой функции ROHF/MP2 в точке минимума равно 24,4 см⁻¹. Вследствие энергетического сжатия спин-орбитальных подуровней Јатома скандия при сближении с молекулой О2 в результате эффектов SOC основное состояние $^2D_{5/2}$ в точке минимума имеет энергию $15\,\mbox{cm}^{-1}$ по сравнению с энергией диссоционного предела радикальной пары $Sc-O_2(^2D_{5/2}-^3X)$. Таким образом, суммарная поправка в энергии (BSSE + SOC) 24,4 + 15 = 39,4 см⁻¹ учтена при расчете энергии диссоциации $D_{e} = 65,8 - 39,4 = 26,4 \text{ см}^{-1}$.

Электрические дипольные моменты радиационных переходов b – X, a – X, b – а при контакте О₂ с атомом скандия экспоненциально возрастают (рис. 2, кривые 1, 2, 3). Данные переходы в столкновительном комплексе прояв-

Рисунок 2. Электрические дипольные моменты радиационных переходов: 1) b – X, 2) a – X, 3) b – a, 4) ${}^{4}F(Sc) {}^{*}3Y_{g}(O_{2}) – X^{2}D(Sc) {}^{*}3Y_{g}(O_{2})$ в столкновительном комплексе Sc-O₂

ляются в результате спин-орбитального смешивания состояний триплет-дублетной радикальной пары^{2,4}[X³У_σ(O₂) – X²D₁(Sc)] с дублетными состояниями ${}^{g}[b^{1}\tilde{Y}_{g}^{+}(O_{2}) - X^{2}D_{J}(Sc)]$. Запрещенный переход в атоме скандия $X^2 D_1 - a^4 F_1$ также становится разрешенным при столкновении с O₂ (рис. 2, кривая 4).

28.08.13

Список литературы:

- 1. Chertihin G.V., Andrews L., Rosi M., Bauschlicher C.W. Reactions of Laser-Ablated Scandium Atoms with Dioxygen. Infrared
- Spectra of ScO, OScO, (O₂)ScO, (ScO)₂, and Sc(O₂)₂ in Solid Argon // J. Phys. Chem. A. 1997. V. 101 (48). P. 9085-9091. 2. Wu H., Wang L.-S. // J. Phys. Chem. A. 1998. V. 102. P. 9129-9135. 3. Kim K.H., Lee Y.S., Kim D. et al. Theoretical Study of the Gas Phase Sc + (NO, O₂) ® ScO + (N, O) Reactions // J. Phys. Chem. A. – 2002. – V. 106. – P. 9600-9605.
- 4. Ritter D., Weisshaar J. C. Kinetics of neutral transition-metal atoms in the gas phase: oxidation of scandium(a²D), titanium(a³F), and vanadium(a⁴F) by nitric oxide, oxygen, and nitrous oxide // J. Phys. Chem. - 1990. - V. 94. - P. 4907-4913.
- 5. Gutsev G.L., Rao B.K., Jena P. Systematic Study of Oxo, Peroxo, and Superoxo Isomers of 3d-Metal Dioxides and Their Anions // J. Phys. Chem. A. 2000. V. 104. P. 11961-11971.
- 6. Uzunova E.L., Mikosch H., Nikolov G.St. Electronic structure of oxide, peroxide, and superoxide clusters of the 3d elements: A comparative density functional study // J. Chem. Phys. – 2008. – V. 128. – P. 094307.
 Schmidt M.W. et al. // J. Comput. Chem. – 1993. – 14. – P. 1347.
 Granovsky A. A. Firefly version 7.1.G // http://classic.chem.msu.su/gran/firefly/index.html

- 9. Gong Yu, Mingfei Z., Andrews L. Spectroscopic and Theoretical Studies of Transition Metal Oxides and Dioxygen Complexes /

- / Chem. Rev. 2009. V. 109 (5). P. 6765-6808. 10. Minaev B.F., Lunell S., Kobzev G.I. // J. of Mol. Struct. (Theochem). 1993. 284. P.1. 11. Minaev B.F., Kobzev G.I. // J. Spectrochimica Acta. Part A 2003. 59, N 14. P. 3387. 12. Кобзев Г.И., Урваев Д.Г. Электронные и спиновые свойства возбужденных интермедиатов Se-O₂// Журнал физической химии. - 2010. - Т. 84 (7). - С. 1324-1332.
- 13. Кобзев Г.И., Урваев Д.Г., Давыдов К.С., Заика Ю.В. Исследование фотохимических процессов в реакции Se + O₂ ® SeO методами квантовой химии с учетом спин-орбитального взаимодействия // Журнал структурной химии. – 2012. – Т. 53 (1). – C. 18-33.
- 14. Кобзев Г.И., Урваев Д.Г., Давыдов К.С., Заика Ю.В. Эффекты спин-орбитального взаимодействия в газофазной реакции Se + O₂ // Журнал неорганической химии. – 2012. – Т. 57 (11). – С. 1562-1575.
- 15. Кобзев Г.И., Урваев Д.Г. Природа связывания и активация молекулярного кислорода в комплексе Mn-O₂ // Журн. структурной химии – 2006. – 47. – Т. 4. – С. 628-635.

Сведения об авторах:

Урваев Денис Генадьевич, учебный мастер каефедры химии Оренбургского государственного

университета

Кобзев Геннадий Игоревич, профессор кафедры химии Оренбургского государственного

университета, доктор химических наук, доцент

460018, г. Оренбург, проспект Победы, д.13, ауд. 3420, тел. (3532) 372485,

e-mail: him@mail.osu.ru, denis-1983@list.ru