Саблина О.А.

Орский гуманитарно-технологический институт (филиал) Оренбургского государственного университета E-mail: sablina_ogti@mail.ru

ФРАКЦИОННО-ГРУППОВОЙ СОСТАВ ГУМУСА СТЕПНЫХ ПОЧВ ЮЖНОГО ЗАУРАЛЬЯ

Рассмотрен фракционно-групповой состав гумуса чернозема обыкновенного, чернозема южного и темно-каштановой почвы в естественных биогеоценозах и агроэкосистемах Оренбургского Зауралья. Установлено, что в зонально-географическом ряду степных почв и в ряду «целина-пашня» наблюдается увеличение степени фульватности и снижение содержания гуминовых кислот.

Ключевые слова: гуминовые кислоты, гумус, Зауралье, темно-каштановая почва, фракционно-групповой состав, фульвокислоты, чернозем.

Введение

Гумусное состояние почв является отражением экологических условий их функционирования и трансформации под влиянием внешних и внутренних сил. При этом надежным показателем устойчивости почвенной системы является не только количественное содержание гумуса, но его и качественный состав. Соотношение групп и фракций гумусовых веществ закономерно изменяется в зонально-генетическом ряду почв, а также вследствие сельскохозяйственного использования почв [1; 3]. В ответ на агрогенную нагрузку органическое вещество почв отвечает изменением соотношения слагающих его компонентов, то есть групп и фракций гумуса. Таким образом, использование почв в составе пахотных угодий приводит к трансформации структуры и качества гумусовых веществ почв. Указанная закономерность подтверждена при изучении лесостепных и степных почв Центрально-Черноземной области и Предуралья [2; 5]. В то же время, почвы Южного Зауралья в этом отношении остаются мало изученными.

Объект и методы исследования

Объектами данного исследования послужили стационарные участки с целинными и пахотными

вариантами зональных подтипов степных почв Южного Зауралья в пределах Оренбургской области. Почва на первом стационарном участке представлена черноземом обыкновенным карбонатным малогумусным среднемощным тяжелосуглинистым на элювиально-делювиальных карбонатных суглинках, на втором участке - черноземом южным карбонатным малогумусным маломощным тяжелосуглинистым на элювиально-делювиальных карбонатных суглинках, на третьем участке – темно-каштановой карбонатной маломощной тяжелосуглинистой почвой на элювиальных карбонатных суглинках. Выбор точек исследования был обусловлен их расположением на выровненных водоразделах в типичных для изучаемых почвенных подзон биоклиматических условиях и под характерными растительными ассоциациями. Фракционно-групповой состав гумуса изученных почв определялся по методике И. В. Тюрина в модификации В. В. Пономаревой – Т. А. Плотниковой [4]. Полученные данные представлены в таблице 1.

Результаты и выводы

Одним из наиболее информативных показателей гумусного состояния почв, рассчитываемых по соотношению долей углерода гуминовых и

Таблица 1. Фракционно-групповой состав органического вещества гумусового горизонта степных почв Южного Зауралья

Почва	Вариант	Собщ, %	Гуминовые кислоты, $\%$ от $C_{\text{общ}}$			□ГК, % от С _{общ}	□ФК, % от С _{общ}	НО, % от С _{общ}	Сгк: Сфк
			ГК1	ГК2	ГК3	от Собщ	от Собщ	от Собщ	
$\mathbf{q}^{\circ 6}$	Целина	3,25	7,13	26,70	8,33	42,16	17,13	40,70	2,46
	Пашня	2,44	8,97	23,63	8,17	40,77	20,13	39,10	2,03
Чю	Целина	2,28	4,83	26,27	6,40	37,50	18,47	44,03	2,03
	Пашня	1,74	6,33	22,23	8,83	37,40	19,73	42,87	1,90
TK	Целина	1,72	3,57	18,20	11,72	33,49	19,40	47,13	1,73
	Пашня	1,63	4,40	16,10	11,69	32,19	20,67	47,17	1,57

Примечание: Чоб – чернозем обыкновенный; Чю – чернозем южный; ТК – темно-каштановая почва.

фульвокислот (Сгк:Сфк), является тип гумуса. Для целинных черноземов характерен гуматный тип гумуса (Сгк:Сфк составляет 2,46 в черноземе обыкновенном и 2,03 в черноземе южном). Целинная темно-каштановая почва имеет фульватно-гуматный тип гумуса (Сгк:Сфк равно 1,73), что вполне характерно для данного подтипа почв.

В пахотных почвах отмечается снижение величины Сгк:Сфк, в наибольшей степени проявляющееся в обыкновенном черноземе. По соотношению углерода гуминовых кислот и фульвокислот пахотный чернозем обыкновенный в большей степени схож не со своим целинным аналогом, а с черноземом южным. Пахотный чернозем южный, тип гумуса которого изменяется под влиянием агрогенного фактора с гуматного на фульватно-гуматный, по данному показателю ближе стоит к целиной темно-каштановой почве. Таким образом, сельскохозяйственное использование почвы приводит к трансформации качественного состава ее гумуса в направлении, эквивалентном сдвигу на одну почвенную подзону к югу.

Это связано с изменением содержания основных групп гумуса. В целинных почвах рассмотренных подтипов в направлении от чернозема обыкновенного к темно-каштановой почве содержание суммы гуминовых кислот снижается (с 42,16% до 33,49%), а фульвокислот — растет (с 17,13% до 19,40%), в связи с чем отношение Сгк:Сфк сужается. В пахотных почвах по сравнению с целинными отмечается снижение доли гуминовых кислот и повышение содержания фульвокислот, что наиболее отчетливо проявляется в черноземе обыкновенном (табл. 1).

Можно предположить, что изменение содержания указанных групп гумусовых веществ происходит преимущественно за счет определенных фракций. Диагностическим признаком для степных почв, в первую очередь черноземов, является высокое содержание фракции ГК2, то есть гуминовых кислот, связанных с кальцием. В ряду географической зональности степных почв содержание ГК2 снижается, в особенности при переходе от черноземов к темно-каштановым почвам (с 26,27% до 18,20%). В пахотных почвах по сравнению с целинными отмечается уменьшение содержания фракции гуминовых кислот, связанных с кальцием. Это свидетельствует о том, что в условиях недостаточного притока свежего растительного опада в агропочвах может происходить минерализация даже весьма устойчивых к разложению фракций гумуса.

Доля фракций свободных, не связанных с двухвалентными металлами и полуторными окислами гуминовых кислот и фульвокислот (ГК1 и ФК1) в пахотных почвах увеличивается. Повышение содержания фульвокислот в агропочвах происходит также за счет фракций ФК1а и ФК3. Если рассматривать фульвокислоты как предшественников гуминовых кислот или продукты их распада, а фракцию ГК1 – как наиболее молодую из группы гуминовых кислот, можно предположить, что увеличение содержания этих фракций связано с частичным разложением гумусовых веществ на первых этапах их минерализации.

Таким образом, вследствие изменения экологических условий гумусообразования при переходе из одной почвенной подзоны в другую, а также из естественных биогеоценозов в агроэкосистемы в степных почвах Южного Зауралья происходят однонаправленные процессы трансформации фракционно-группового состава гумуса: увеличение степени фульватности и снижение степени гумификации органического вещества. В связи с этим можно утверждать, что агрогенное воздействие на почву проявляется в изменении ее гумусного состояния за счет приобретения признаков, характерных для более южных подтипов почв.

29.05.2011

Список литературы:

Сведения об авторе: Саблина Ольга Анваровна, старший преподаватель кафедры общей биологии естественно-научного факультета Орского гуманитарно-технологического института (филиала) Оренбургского государственного университета 462403, г. Орск, пр. Мира, 15a, e-mail: sablina ogti@mail.ru

^{1.} Бирюкова, О Н. Содержание и состав гумуса в основных типах почв России / О. Н. Бирюкова, Д. С. Орлов // Почвоведение. – 2004. – №2. – С. 171–188.

^{2.} Девятова, Т.А. Антропогенная трансформация черноземов центра Русской равнины / Т.А. Девятова, Д.И. Щеглов, А.П. Щербаков, В. Г. Артюхов // Вестник Воронежского государственного университета. Серия: Химия. Биология. Фармация. — 2004. — №2. — С. 128—134.

^{3.} Орлов, Д.С. Гумусовые кислоты почв и общая теория гумификации / Д.С. Орлов. — М.: Изд-во МГУ, 1990. - 325 с.

^{4.} Практикум по агрохимии / под ред. В. Г. Минеева. – 2-е изд., перераб. и доп. – М.: Изд-во МГУ, 2001. – 689 с.

Русанов, А.М. Гумусообразование и гумус лесостепных и степных черноземов Южного Предуралья / А.М. Русанов, Л.В. Анилова // Почвоведение. – 2009. – №10. – С. 1184–1191.