Хайруллин Р.М., Минина Т.С., Иргалина Р.Ш., Загребин И.А., Уразбахтина Н.А. Башкирский государственный аграрный университет, г. Уфа

ЭФФЕКТИВНОСТЬ НОВЫХ ЭНДОФИТНЫХ ШТАММОВ BACILLUS SUBTILIS В ПОВЫШЕНИИ УСТОЙЧИВОСТИ ПШЕНИЦЫ К БОЛЕЗНЯМ

Выделены новые эндофитные штаммы *Bacillus subtilis* с хозяйственно-полезными признаками. Показано, что применение биопрепаратов на их основе для обработки семян пшеницы способствует увеличению урожайности за счет улучшения показателей структуры урожая, повышает устойчивость растений к корневым гнилям и твердой головне. Выявлено, что применение стимулятора роста гуми-20 нежелательно для обработки семян, заспоренных возбудителем твердой головни грибом *Tilletia caries* (DC) Tul.

В защите от почвенных и семенных инфекций эффективным является такой прием, как протравливание семян [6, 7]. Эта технологическая операция снижает степень заражения развивающихся проростков патогенными микроорганизмами, предупреждает занесение инфекции от семян в почву, а также распространение отдельных фитопатогенов с посевным материалом в другие районы. Современный ассортимент протравителей достаточно разнообразен. Однако нередко стоимость таких препаратов высока; химические фунгициды, как правило, опасны для окружающей среды и человека. Поэтому в условиях рыночной экономики сельскохозяйственные товаропроизводители ищут способы снижения затрат по защите растений от вредных организмов путем использования малорасходных веществ или препаратов относительно дешевых, но с высокой биологической эффективностью [12]. При этом специалисты проявляют повышенный интерес к биологически активным веществам, стимуляторам роста растений и биофунгицидам, поскольку большинство из них экологически малоопасны, с их помощью можно не только повышать продуктивность и стимулировать рост, но и снижать заболеваемость растений [1, 6, 11, 12].

Одним из известных стимуляторов роста растений является препарат гуми (ООО НВП «БашИнком») [1], в состав которого входят гуминовые кислоты из бурых углей, а также микроэлементы. Гуматы могут выступать как эффективные стимуляторы роста растений и регуляторы почвообразовательных процессов [11]. К известным в растениеводстве биопрепаратам относятся также продукты на основе эндофитных микробов. Отметим, что микробные эндофиты определены как бактерии, живущие в растительных тканях без нанесения

существенного вреда или получения выгоды, большей, чем от места жительства [6]. К препаратам на основе эндофитов относятся фитоспорин-М (ООО НВП «БашИнком», штамм 26D *B. subtilis*) и интеграл (ЗАО «Элита Комплекс», штамм *B. subtilis* 24Д). Бактериальные штаммы, входящие в основу этих препаратов, подавляют рост грибных возбудителей корневых гнилей пшеницы, плесневения семян, другой инфекции [13].

Среди фитопатогенов пшеницы, вызывающих одно из наиболее вредоносных заболеваний, известен возбудитель твердой головни гриб *Tilletia caries (DC) Tul*. При поражении колоса этим грибом зерно полностью превращается в черную споровую массу [8]. Патогенное начало в виде хламидоспор грибов сохраняется на поверхности семян. Заражение растений происходит в период прорастания семян при одновременном прорастании хламидоспор. Как объект антагонистического действия эндофитов этот гриб привлекает особое внимание.

К числу весьма вредоносных заболеваний хлебных злаков относятся также корневые гнили. Возбудителями являются широко распространенные виды грибов (*Bipolaris sp., Fusarium sp.* и другие), живущие на оболочках и внутри семян, в почве и внутри отмерших растений [4, 14]. Биопрепараты, эффективно защищающие злаковые растения не только от корневых гнилей, но и от головневых болезней, до сих пор не созданы. В связи с этим целью наших исследований является поиск и выделение новых эндофитных штаммов *B. subtilis*, способных снижать распространение твердой головни и корневых гнилей на посевах пшеницы.

Эндофитные штаммы бацилл выделялись в лаборатории биотехнологии Башкирского ГАУ из растений пшеницы. Отбор штаммов произво-

дился по антагонистической активности к фитопатогенным грибам блочным методом [9]. Тесткультуры грибов высевали газоном на поверхность картофельно-глюкозного агара в чашки Петри. Взвесь клеток штаммов *B. subtilis* в 0,9%ном растворе NaCl высевали аналогично на мясопептонный агар. Блоки с культурами *B. subtilis* наносили на поверхность растущих тест-культур.

Результаты анализа антагонистической активности штаммов бацилл представлены в таблице 1. Как видно, штаммы активно подавляли метаболитами рост грибов *A. alternata, B. byssoidae, B. sorokiniana, Cladosporium sp., F. avenaceum, F. culmorum, F. oxysporum.* В меньшей степени антагонизм проявлялся по отношению к *B. aclada, F. moniliforme, F. sporotrichioides.* Следует отметить, что при обработке семян пшеницы клетками бактерий в низких концентрациях (10⁷-10⁸ колониеобразующих единиц (КОЕ)/мл) не наблюдали угнетение роста проростков, а некоторые из них (11PH, 118 PH) стимулировали прорастание семян.

Дальнейшие исследования проводились в полевых опытах в учебно-научном центре Башкирского ГАУ (п. Ягодная поляна). Для оценки защитных свойств препаратов на основе штаммов бактерии культивировали в биореакторе «Биок» (ЗАО «Саяны»). Получали препараты с титром 2,5х10⁹ КОЕ/мл, аналогичные биофунгициду фитоспорин [5]. Обработку семян проводили из расчета 10 л рабочей жидкости на

1 тонну семян. Расход препаратов составлял 2л/т семян. Эталонами служили протравитель раксил (Bayer), фитоспорин-М, а также гуми-20 (ООО НВП «БашИнком»). Контрольные семена обрабатывали водой.

Инфекционный фон формировали, заражая семена спорами гриба *Т. caries* из расчета 0,3 г спор на 100 г семян. Агротехника возделывания пшеницы была общепринятой для южной лесостепной зоны республики. Делянки площадью 1 м² размещались систематически, в трех повторениях. Посев производился вручную. Оценку поражения растений корневыми гнилями проводили по методике, описанной ВИЗР [10]. Обработку результатов исследований проводили по методике полевого опыта [3].

Как видно из таблицы 2, из биопрепаратов наибольший защитный эффект против корневых гнилей в фазу кущения проявил биофунгицид на основе штамма 118РН. Заметно, что защита растений экспериментальными препаратами в смеси с гуми в начальные фазы развития пшеницы была менее эффективной, чем только клетками бактерий. Однако к концу вегетации применение этого стимулятора роста совместно с эндофитами оказывало ингибирующий эффект на развитие корневых гнилей. При этом препарат на основе штамма 118РН в смеси с гуми не уступал по эффективности препаратам фитоспорин-М и гуми, а также фунгициду раксил.

Фитопатогены	Зона подавления роста тест-культур, мм					
Фитопатогены	26D*	11PH	49PH	89PH	118PH	
Alternaria alternata	25×27 ^{**} Л	25х25 Л	27х22 Л	27х27 Л	25х25 Л	
Botrytis cinerea	15×15 Л	20x15 Π***	12х15 Л	15х15 Л	35х35 Л	
B. aclada	10×11 Y	10х8 У****	10х10 У	8х12 У	8x8 Y	
B. byssoidea	40×40 Л	25х35 Л	27х25 Л	15х15 Л	25х30 Л	
Bipolaris sorokiniana	35х40 Л	28х30 Л	25х25 Л	18х25 Л	25х20 Л	
Cladosporium sp.	13×12 Л	15х15 Л	12х14 Л	12х12 Л	10х12 Л	
Fusarium avenaceum	11×11 Л	10х12 Л	10х8 Л	8х8 Л	10х8 Л	
F. culmorum	12×10 Л	ПЛ****	17х20 Л	15х10 Л	20х18 Л	
F. oxysporum	20×20 Л	20х20 Л	16х15 Л	ПУ****	18х20 Л	
F. sporotrichioides	ПП****	ПП	ПП	ПП	ПП	
F. moniliforme	10×10 У	10х12 У	8x10 У	12х12 У	10х10 У	

Таблица 1. Антагонистическая активность новых штаммов B. subtilis

^{*}штамм *B. subtilis* оценивался как «эталон»; ***лизис мицелия (полное торможение роста гриба с зоной просветления агара вокруг блока с бактериями); ***подавление (частичное торможение) роста гриба; ****угнетение роста и развития гриба вследствие угнетающего действия на него бактерии; ***** полный лизис, угнетение, подавление соответственно.

Вариант	Êóùåíèá	å - âûõî ä в трубку	Молочно-восковая спелость		
Барнапт	развитие	развитие распространение		распространение	
Контроль	1,6	8,0	8,3	25,5	
11PH	1,6	7,7	13,9	36,8	
11РН+гуми	2,3	12,5	5,9	18,8	
118PH	1,5	6,5	7,6	21,5	
118РН+гуми	2,3	11,3	4,9	16,7	
Фитоспорин-М	2,4	14,5	11,7	30,5	
Гуми	2,5	15,2	5,7	19,3	
Раксил	1,6	7,0	9,7	29,0	

Таблица 2. Развитие и распространение корневых гнилей на посевах яровой пшеницы на контрольном фоне (%)

Интересно, что обработка семян препаратом гуми-20 способствовала многократному повышению степени распространения твердой головни (таблица 3). Не исключено, что известный ауксин-подобный эффект гуматов оказал позитивное влияние на развитие биотрофного гриба, о чем довольно часто указывается в литературе при оценке влияния ауксинов на поражение растений биотрофными и гемибиотрофными фитопатогенами [2].

Новый биофунгицид на основе штамма 11PH проявил высокую эффективность в снижении распространения твердой головни пшеницы. По защитному действию он практически не уступал фунгициду раксил. Биофунгициды на основе штаммов 26D и 118PH были менее эффективны в борьбе с твердой головней, чем химический препарат раксил.

Оценка хозяйственной эффективности применения препаратов возможна на основе сопоставления урожайности культуры. В опытах расчет урожайности на инфекционном фоне *T. caries* проводили без учета колосьев, инфицированных возбудителем твердой головни (таблица 4).

Применение биопрепаратов на основе новых штаммов способствовало повышению урожайности яровой пшеницы не только в сравнении с контролем (на 41-43%), но и с прототипом фитоспорин-М (на 8-9%). На контрольном фоне среди биопрепаратов наиболее эффективным в повышении урожайности оказался препарат на основе штамма 11PH; он практически не уступал химическому препарату раксил.

На инфекционном фоне обработка семян препаратом раксил позволила получить урожайность 15,5 ц/га, в то время как обработка гуматом повысила урожайность растений на 8%

относительно контрольных и обработанных фунгицидом раксил. Однако эта прибавка урожая рассчитана без оценки распространения болезни (учитывали только здоровые колосья). Если же учесть, что обработка гуми повышала распространение головни на 18,7%, то в целом его применение на инфекционном фоне было неэффективно.

Использование биопрепаратов положительно влияло на некоторые элементы структуры урожая. На контрольном фоне наблюдалась тенденция увеличения на 4-7% числа продуктивных стеблей пшеницы. Обработка гуми снизила этот показатель на 14%. Применение раксила по отношению к контрольным растениям незначительно повысило число продуктивных стеблей. Следует отметить, что на инфекционном фоне *T. caries* обработка семян суспензией клеток новых штаммов бактерий с гуматом снижала этот показатель, так же, как и обработка только препаратом гуми.

Применение биопрепаратов на контрольном фоне позитивно влияло на формирование зерновок в колосе, за счет чего в нем возросла масса зерна (таблица 5). При этом масса

Таблица 3. Влияние обработки семян пшеницы препаратами на распространение твердой головни

Вариант	Распространение, %		
11PH	0,9		
11РН+гуми	20,5		
118PH	3,8		
118РН+гуми	14,5		
Фитоспорин-М	1,8		
Гуми	18,7		
Раксил	0,7		

Таблица 4. Влияние обработки семян препаратами на урожайность зерна

Вариант	Урожайность, ц/га			
Бариант	е̂онтрольный фон	èнфекционный фон T. caries		
Контроль	11,6	15,5		
11PH	17,1	15,8		
11РН+гуми	16,6	16,0		
118PH	16,4	15,5		
118РН+гуми	15,5	15,0		
Фитоспорин-М	15,6	14,8		
Гуми	16,8	16,7		
Раксил	17,8	15,5		
HCP _{0,5}	1,29	1,31		

Таблица 5. Влияние обработки семян на элементы структуры урожая яровой пшеницы

Вариант	Контрольный фон			Инфекционный фон		
	÷исло зерен в колосе	ì асса зерна 1 колоса,г	ì асса 1000 зерен, ã	÷исло зерен в колосе	ì асса зерна1 колоса, ã*	ì асса 1000 зерен, г
Контроль	12	0,33	27,1	18	0,49	26,5
11PH	16	0,46	27,5	15	0,41	27,2
11РН+гуми	16	0,46	28,1	17	0,46	26,9
118PH	17	0,45	26,9	18	0,49	26,7
118РН+гуми	16	0,43	26,7	21	0,56	26,3
Фитоспорин-М	17	0,44	26,4	15	0,40	27,2
Гуми	20	0,54	27,5	23	0,63	26,7
Раксил	18	0,49	27,5	17	0,45	26,8

^{*} учитывали здоровый колос

1000 зерен существенно не изменилась, как на инфекционном, так и на контрольном фонах. Использование биопрепаратов на контрольном фоне повысило массу зерна с одного колоса по отношению к контролю на 30-60%. В вариантах с инфекционной нагрузкой семян спорами *T. caries* обработка биопрепаратами, за исключением гумата и смеси его с препаратом на основе 118PH, снижала массу зерна с одного колоса.

Применение препарата на основе штамма 118РН, а также гуми-20 привело к снижению числа продуктивных стеблей на контрольном и инфекционном фонах. В то же время обработка семян этими препаратами повысила массу зерна с одного колоса. Следовательно, можно предположить, что рост последнего показателя объясняется снижением числа продуктивных стеблей на единице площади.

Хорошо известно, что гуматы стимулируют рост растений [1]. По нашим данным, это

может приводить к увеличению массы зерна в колосе пшеницы. Однако при инфицировании семян возбудителем твердой головни ростстимулирующий эффект гуми-20 негативно влияет на инфекционный процесс у растений пшеницы, что повышает распространение головневой инфекции на посевах, обработанных этим препаратом. Более того, оказалось, что обработка семян, заспоренных *T. caries*, препаратами на основе эндофитов совместно с гуми-20 также не целесообразна.

Таким образом, анализируя данные, полученные в результате исследований, можно сделать следующие выводы.

- 1. Выделены новые эндофитные штаммы *B. subtilis*, не уступающие, а также превышающие антагонистическую активность эталонного штамма 26D *B. subtilis*, являющегося основой препарата фитоспорин-М.
- 2. Экспериментальный биофунгицид на основе штамма 11PH *B. subtilis* по своей эффектив-

ности в защите растений пшеницы от твердой головни и в повышении урожайности не уступает известному фунгициду раксил и существенно превышает таковые показатели в сравнении с препаратом-прототипом фитоспорин-М.

3. Применение препарата гуми-20 для обработки семян пшеницы, заспоренных возбудителем твердой головни грибом *T. caries*, повышает распространение головни на посевах этой культуры.

Список использованной литературы:

- 1. Вакуленко В.В. Биологические препараты в технологии выращивания сельскохозяйственных растений // Биологические препараты растительного происхождения и их применение в технологии возделывания сельскохозяйственных культур. Сборник тезисов. – Новосибирск: Институт цитологии и генетики СО РАН, ООП НПП «Биохимзащита» – 2004. – С. 75
- 2. Ганиев Р.М. Взаимоотношения пшеницы с возбудителем твердой головни Tilletia caries (DC.) Tul. на ранних этапах патогенеза // Автореф. дисс. канд. с.-х. наук. – Курган, 2000. – 18 с. 3. Доспехов Б.А. Методика полевого опыта. – М.: «Колос», 1973. – С.175-178.
- 4. Коршунова А.Ф., Чумаков А.С., Щекочихина Р.И. Защита пшеницы от корневых гнилей. Л.: ВИЗР, 1976. 34 с.
- 5. Кузьмина Л.Ю. Логинов О.Н., Бойко Т.Ф. и др. Эффективность бактериальных препаратов при защите растений яровой пшеницы от твердой головни // С.-х. биология. Сер. Биология растений. 2003. –№.5. С. 69-73.
- 6. Недорезков В.Д. Биологическая защита пшеницы в условиях Южного Урала. М.: Изд-во МСХА, 2002. 173 с.
- Недорезков В.Д. Биологическое обоснование применения эндофитных бактерий в защите пшеницы от болезней на Южном Урале. – Автореф. дисс. д-ра с.-х. наук. – С-Пб: ВИЗР, 2003. – 41 с. 8. Пересыпкин В.Ф. Болезни зерновых культур. – М.: Колос, 1979. – 384 с.
- 9. Практикум по микробиологии // Ред. Нетрусов А.И. и др. М.: Издательский центр «Академия», 2005. 608 с.
- 10. Санин С.С., Неклеса Н.П. Методические указания по проведению производственных демонстрационных испытаний средств и методов защиты зерновых культур от болезней // Защита и карантин растений. 2004. Приложение. 23 с.
- 11. Ткаленко А.Н., Гораль С.В. Биопрепараты для защиты овощных культур. // Защита и карантин растений. − 2005. №. 1. −
- 12. Тютерев С.Л. Научные основы индуцированной болезнеустойчивости растений. С-Пб: ВИЗР, 2002. 328 с.
- 13. Хайруллин Р.М., Недорезков В.Д., Уразбахтина Н.А. и др. Пути повышения устойчивости пшеницы к болезням эндофитными штаммами Bacillus subtilis // Индуцированный иммунитет сельскохозяйственных культур – важное направление в защите растений (материалы Всероссийского научно-практической конференции. – Большие Вяземы – С.-Пб.: 2006. – 58 с.
- 14. Чулкина В.А.Корневые гнили злаков. Новосибирск: Наука, Сибирское отд-ние, 1985. 189 с.