Гулянов Ю.А.

Оренбургский государственный аграрный университет

ВЛИЯНИЕ РЕГУЛЯТОРОВ РОСТА РАСТЕНИЙ НА РЕАЛИЗАЦИЮ РЕСУРСНОГО ПОТЕНЦИАЛА АГРОЦЕНОЗОВ ОЗИМОЙ ПШЕНИЦЫ В УСЛОВИЯХ ОРЕНБУРГСКОГО ПРЕДУРАЛЬЯ

При разработке приемов возделывания, направленных на повышение ресурсного потенциала озимой пшеницы на черноземах южных Оренбургского Предуралья, выявлены наиболее адаптивные регуляторы роста растений, позволяющие значительно повысить устойчивость и урожайность пшеничных агроценозов.

В формировании устойчивых высокопродуктивных посевов озимой пшеницы в Оренбургском Предуралье первостепенное значение имеют приемы, направленные на более полную реализацию ресурсного потенциала современных сортов на основе рационального использования, охраны и воспроизводства природных ресурсов.

Одним из таких приемов является применение микроэлементов и регуляторов роста растений (Задорожная, 2003; Медведев, Михайлов, 2003; Лухменев, 2003; Борздыко и др., 2003; Зиганшин и др., 2004).

В результате проведенных исследований установлено, что в условиях засушливой степи Южного Урала опрыскивание посевов водными растворами регуляторов роста растений сопровождается существенной прибавкой урожайности.

Исследования проводились на черноземах южных опытного поля НИИ агроэкологии (1999–2004 гг.) Оренбургского ГАУ с содержанием гумуса в пахотном слое почвы 3,8%, подвижного азота (NO_3^-) – 1,35 мг на 100 г почвы, легкогидролизируемого азота – 8,4 мг, подвижного фосфора (P_2O_5) – 3,25 мг, обменного калия (K_2O) – 27 мг на 100 г почвы и рН – 7,8 с сортами озимой пшеницы селекции Оренбургского ГАУ (Краснова Л.И.) в полевом зернопаропропашном севообороте.

Озимую пшеницу Оренбургская 105 высевали в оптимальные сроки (25,08 – 5,09), нормами семян, рассчитанными на обеспеченный ресурсами влаги продуктивный стеблестой (450–600 штук /м²), на азотно-фосфорном минеральном фоне.

Минеральные (NP) удобрения общей нормой 93 кг/га д.в. (с учетом экономической и экологической целесообразности) рас-

пределяли следующим образом: 36 кг/га в рядке при посеве, 34 кг/га в прикорневую подкормку весной при физической спелости почвы и 23 кг/га в некорневую подкормку в фазу выхода в трубку с расходом рабочего раствора $300\,\text{л/г}$ а и концентрацией 16,6% (мочевины), 7,6% (N, д. в-ва).

Регуляторы роста растений – Крезацин, Гумат натрия, Агат-25К и Биосил в рекомендуемых дозах («Список пестицидов и агрохимикатов, разрешенных к применению на территории РФ // Приложение к журналу «Защита и карантин растений») вносили в виде водного раствора одновременно с некорневой подкормкой азотом мочевины в фазу выхода в трубку.

Результаты исследований свидетельствуют, что при использовании препарата Биосил (производного тритерпеновой кислоты) в рекомендуемых концентрациях в среднем за шестилетний период урожайность озимой пшеницы повысилась на 1,4–2,0 ц/га (4,5–7,2%), на 1,6–2,1 ц/га (5,2–7,6%) – при применении регулятора роста Крезацин, изготовляемого на основе триэтаноламмониевой соли ортокрезоксиуксусной кислоты (табл. 1).

Наибольшая прибавка урожайности, 2,1–2,7 и 2,6–3,2 ц/га, отмечалась на делянках, обработанных водными растворами Гумата натрия и Агата-25К. Дополнительный урожай, полученный от их применения, составил 6,8–9,7 и 8,4–11,6% от урожайности контрольного варианта.

Использование регуляторов роста растений сопровождалось увеличением в посевах числа главных побегов за счет повышения сохранности и общей выживаемости растений, а также их участия в формировании урожая, при этом масса зерна в колосе изменялась незначительно.

 Таблица 1. Урожайность озимой пшеницы при опрыскивании посевов водными растворами регуляторов роста растений (РРР) (1999-2004 гг.)

					_																	
	отклонение	от контроля	%				2,6	6,0	5,2	2,6	9,7	8,9	11,6	8,9	8,4	7,2	5,3	4,5				
Средние за 1999-2004 гг.			ц/га				2,1	1,8	1,6	2,7	2,3	2,1	3,2	2,7	2,6	2,0	1,6	1,4				
Средние 999-200⁄	в т.ч. по	фактору	P	29,7	29,6 31,9	32,4																
3a 1	B T.	фак	A					31,4			32,5 32,0			32,4			31,3					
		ı×	;	27,7	30,2	30,9	29,8	32,0	32,5	30,4	32,5	33,0	30,9	32,9	33,5	29,7	31,8	32,3				
	ОП	opy	Р	29,5	31,2	32,0															0,57	
2004 г.	в т.ч. по	фактору	A		27,5			31,5	l.		32,0			32,2			31,3			0,74		
Ö		ı×		25,4	28,3	6,82	30,2	31,9	32,5	30,9	32,2 32,0	32,9	31,2	32,1	33,2	6,62	31,7	32,4				1,28
	ОП	py	Р	31,9	33,1	33,6 28,9															0,63	
2003 г.	в т.ч. по	фактору	A	.,	32.2 32.0 33.4 39.4 39.1 41.1 22.8 22.5 25.0 25.8 25.1 27.3 32.3 31.3 33.1 28.3 27.5 31.2	.,		32,6			33,9			34,1			32,5			0,81	_	
20		ı×	:	29,6	2,3	2,0	32,0	32,7	33,2	32,8	34,1	34,7	33,1	34,1	35,2	31,9	32,5	33,1)		1,41
	ОП	Т	P	24,2	7,3 3	28,0 32,0	3	63	60	63	3	3	3	m	m	3	3	63			69,0	_
2002 г.	В Т.Ч. ПО	фактору	A	7	25,1 2	2		6,3			1,1			8,7,8			1,93			0,89	0	
20		×		22,9	25,8 2	9,93	23,9	27,0 26,3	27,9	24,8	28,4 27,1	28,1	25,8	28,4 27,8	29,3	23,7	26,9 26,1	27,7)		1,54
	ОП	by	Р	22,4	25,0 2	24,9 26,6	. 1	. ,		. ,	. 1	. 1	7	. 4	(1	. 4	. 1	. ,			0,53	
2001 г.	в т.ч. по	фактору	A	. 1	22,5			24,2			24,6			25,0			24,1			99,0		
5		ı×	:	21,1	22,8	23,7	22,5	25,3 24,2	24,9	22,9	25,7 24,6	25,3	23,3	25,9 25,0	25,7	22,4	25,1	24,9				1,18
	ОП.	opy	Р	38,0 21,1	41,1	41,6 23,7															0,65	
2000 г.	в т.ч. по	фактору	Α		39,1			40,6			40,9 40,4			42,3 41,0			40,1			0,83		
(4		ı×		32,1 37,2	39,4	34,7 40,7	38,3	41,8	41,6	38,3	40,9	41,9	38,5	42,3	42,2	37,6	41,2 40,1	41,4				1,44
,.	В Т.Ч. ПО	фактору	P	32,1	33,4	34,7															0,73	
1999 _F .	B T.		A		32,0			33,3 33,4			33,7 33,8			34,6 34,5			33,3 33,4			0,94		
		ı×		30,1	32,2	33,6	31,9	33,3	34,9	32,7	33,7	35,1	33,3	34,6	35,6	32,4	33,3	34,5				1,64
	Р	норма высева,	штук всхожих семян на 1 M^2	450	525	009	450	525	009	450	525	009	450	525	009	450	525	009	а	A	действия АБ	здних
Факторы	A	регуляторы роста	растений, норма внесения, г/га	The day of the	bes FFF (H ₂ O)	чтод тном	Veccent	презацин, ГРП5 г/го	B.1/1 C113N		л умат натрия, ртт 60 т/то	F11 00 1/1 a	ASC work	Alai-23N, THC 14 =/50	1110 141/18		БИОСИЛ, ВЭ 30 мг/го	B 30 MJ/14	HCP_{05} , u/ra	для фактора А	для фактора Б и взаимодействия АБ	для частных средних

Так, на контрольном (без PPP) варианте при продуктивной кустистости 1,8 в разреженных посевах (норма высева 450 всхожих семян на 1 м^2) к уборке насчитывалось 376,5 растения на 1 м^2 , 141,2 из которых были двухколосыми.

Масса зерна с колоса главного побега была равна 0.79 г и 0.64 г зерна — с побега кущения. В уплотненных посевах на этом же варианте (посев нормой 600 всхожих семян на 1 м^2) из 471.7 растения с 1 м^2 176.9 имели по два колоса с массой зерна 0.71 г в главных и 0.57 г — в боковых побегах.

Гумат натрия и Агат-25К, нанесенные на растения в виде водного раствора в фазу выхода в трубку, увеличивали в посевах число одностебельных растений до 244,3–261,1 штук/м² в разреженных и 318,6–340,7 штук/м² – в уплотненных посевах. При практически не изменившейся массе зерна в колосе этот фактор и оказался основным в повышении урожайности делянок, обработанных регуляторами роста растений.

В засушливых условиях Оренбургского Предуралья урожайность посевов озимой пшеницы определяется чаще всего количеством растений (продуктивных стеблей), сохранившихся к уборке, поэтому разработка приемов, снижающих гибель растений и повышающих устойчивость пшеничных агроценозов, остается актуальным направлением совершенствования адаптивных технологий.

Так, использование самых эффективных, по результатам шестилетних наблюдений, регуляторов роста растений (Гумат натрия и Агат-25К) сопровождалось увеличением числа сохранившихся к уборке растений на 2,3-4,6 и 6,6-8,8% (9,0-23,8 и 25,6-45,9 штук/м²) соответственно (табл. 2).

Применение водных растворов Крезацина и Биосила также способствовало повышению сохранности и общей выживаемости растений озимой пшеницы, хотя и менее выраженно.

Опрыскивание посевов озимой пшеницы водными растворами регуляторов роста ра-

Таблица 2. Сохранность и общая выживаемость растений озимой пшеницы при обработке посевов водными растворами регуляторов роста растений (средние данные за 1999-2004 гг.)

Норма высева, штук/м ² всхожих семян	Расчетное число продуктивных стеблей в уборку, штук/ 2	Количество растений, сохранившихся к уборке, штук/ м^2	Сохранность растений, %	Общая выживаемость, %
	Конт	гроль - без PPP (H ₂ O)		
450	476	235,3	59,3	52,3
525	555	267,8	55,7	51,0
600	634	294,8	56,0	49,1
		Крезацин		
450	476	243,6	61,4	54,1
525	555	281,3	60,7	53,6
600	634	314,2	59,7	52,4
		Гумат натрия		
450	476	244,3	61,6	54,3
525	555	281,7	60,8	53,7
600	634	318,6	60,6	53,1
		Агат-25К		
450	476	261,1	65,9	54,4
525	555	301,6	65,1	53,9
600	634	340,7	64,8	53,2
		Биосил	•	
450	476	242,4	61,1	53,9
525	555	275,4	59,4	52,5
600	634	307,5	58,5	51,3

Таблица 3. Зависимость фотосинтетического потенциала посевов озимой пшеницы от максимальной площади листьев при применении регуляторов роста растений (1999-2004 гг.)

	Коэффициент степени влияния, ?	Коэффициент регрессии, В	Критерий Стьюдента, t (16)	Уровень значимости, Р					
		Агат-25К							
Свободный член		833,4 <u>+</u> 37,0	22,6	0,0000					
X^2	0,970 <u>+</u> 0,06	1,21 <u>+</u> 0,07	16,3	0,0000					
Коэффициент корреляции (r) = 0,970									
Коэффициент детерминации $(r^2) = 0.941$									
F(1,16) = 267,08									
$F_{01} = 8,53$									
Стандартная ошибка оценки – 49,60 тыс.м ² дней/га									
Уравнение регрессии $Y = 833,4 + 1,21 \cdot X^2$									
У – фото	всех уравнений регрессии синтетический потенциал имальная площадь листье		;						

стений увеличивало количество продуктивных стеблей к уборке.

При обработке посевов чистой водой (вариант контроль – без PPP) на делянках с расчетным числом продуктивных стеблей 476 (посев нормой 450 всхожих семян на 1 m^2) – 634 (посев нормой 600 всхожих семян на 1 m^2) штук/м² насчитывалось 376,5–471,7 стеблей с колосом, выполнение программы составило 74,4–79,1%.

Стимулирующее действие регуляторов роста растений приводило к увеличению числа продуктивных стеблей до 390,8–509,8 штук/м² при обработке препаратом Гумат натрия и до 391,7–511,0 штук/м² – при обработке Агатом-25К, выполнение программы по продуктивному стеблестою к уборке повышалось до 80,4–82,1 и 80,6–82,3%.

Нами установлено, что опрыскивание данными препаратами вегетирующих растений в фазу выхода в трубку положительно влияет на развитие и сохранение работоспособности ассимиляционного аппарата.

Из участвовавших в эксперименте регуляторов роста растений наиболее положительное влияние на прирост листовой поверхности оказал Агат-25К, нанесенный на растения в виде водного раствора. Его применение обеспечило формирование более мощного ассимиляционного аппарата по сравнению с контрольным вариантом.

Результаты обработки статистических данных, полученных в процессе корреляци-

онно-регрессионного анализа, показали, что фотосинтетический потенциал посевов озимой пшеницы при их обработке водными растворами регуляторов роста растений, сильно связан ($r^2 = 0.970$) с максимальной площадью листьев (табл. 3).

Зависимость упомянутых фитометрических показателей посевов выражается уравнениями регрессии следующего вида:

 $y = 833,4+1,21\cdot X^2$ (Агат 25К, опрыскивание водным раствором).

Уравнение адекватно для 94,1% случаев эксперимента (r=0,941) при $F_{\text{факт}}=367,08 > F_{\text{теор.},01}=8,53$ или максимальная площадь листьев в посевах озимой пшеницы, обработанных в фазу выхода в трубку водными растворами регуляторов роста растений (Агат-25К), детерминирует 94,1% дисперсии фотосинтетического потенциала.

Опрыскивание посевов озимой пшеницы водными растворами регуляторов роста растений (1999–2004 гг.) положительно сказалось на накоплении солнечной энергии в биомассе пшеницы и использовании ее в формировании урожая с более высоким КПД.

Применение самого эффективного (по урожайности зерна) из регуляторов роста растений Агат-25К позволило дополнительно к контрольным делянкам накопить в сухой биомассе с каждого гектара 16,7 (14,4%) - 15,5 (11,7%) тыс. МДж.

Коэффициент полезного действия фотосинтетически активной радиации (КПД ФАР) при использовании физиологически активных веществ повышался, и в среднем за 1999–2004 гг. на вариантах с использованием Агата-25К он был выше, чем на контрольных делянках, на 0,13 (13,9%), составив 1,06–1,19% от приходящей ФАР.

Таким образом, применение в посевах озимой пшеницы современных регуляторов

роста растений, способствуя повышению сохранности, общей выживаемости растений, плотности продуктивного стеблестоя, более эффективному использованию фотосинтетически активной радиации, обеспечивает более полную реализацию ресурсного потенциала озимой пшеницы в условиях черноземных почв Оренбургского Предуралья.

Список использованной литературы:

- 1. Задорожная, В.А. Беспестицидные способы улучшения посевных и товарных качеств зерна твердой яровой пшеницы: автореф. дисс...к. с.-х. н. Воронеж, 2003. 20 с.
- 2. Медведев, Г.А. Влияние бишофита на формирование урожая озимой пшеницы на светло-каштановых почвах Волгоградской области / Г.А. Медведев, В.И. Михайлов // Адаптивные системы в аридных районах Волго-Донских провинций. Волгоград, 2003 С. 208 211.
- 3. Лухменев, В.П. Комплексная химическая и биологическая защита посевов пшеницы и ячменя от вредителей, болезней и сорняков на Южном Урале // Материалы международной научно-практической конференции. Оренбург, 2003 С. 22 26.
- 4. Борздыко, И.А. Оценка роли применения бактериальных удобрений при производстве яровой пшеницы и картофеля. / И.А. Борздыко, Р.И. Сафин, А.И. Исмаилова // Актуальные вопросы развития аграрной науки: Материалы научн. исследований сотрудников агрофака КГСХА. Казань: КГСХА, 2003. С.86 88.
- 5. Зиганшин, А.А. Роль биопрепаратов и микроудобрений в защите растений / А.А. Зиганшин, А.И. Исмаилова, И.А. Борздыко // Биотехнология на полях Татарстана // Тр. научно-практической конференции. Казань: КГУ, 2004. С. 29 30.

Статья рекомендована к публикации 14.03.07