Колесников П.Н., Манаков Н.А., Толстобров Ю.В.*

Оренбургский государственный университет, *Бийский педагогический государственный университет им. В.М. Шукшина

МИКРОМАГНИТНОЕ МОДЕЛИРОВАНИЕ ДОМЕННЫХ СТРУКТУР В МОНОКРИСТАЛЛИЧЕСКОЙ ПРИЗМЕ ТРЕУГОЛЬНОГО СЕЧЕНИЯ

Представлены результаты численного моделирования распределения намагниченности в бесконечно длинной монокристаллической призме треугольного сечения. Выявлено несколько видов доменных структур, возникающих при варьировании магнитных параметров и размера монокристалла. Область существования каждой из обнаруженных структур показана на диаграмме.

введение

Основные представления о характере доменной структуры ферромагнетиков ограниченного объема сформировались в 50–60-е гг. прошлого столетия в рамках теории микромагнетизма. Исходные предположения о форме доменов определялись условиями обеспечения минимума магнитостатической энергии монокристаллов. В частности, в работе [1] доменная структура одноосного монокристалла, имеющего форму прямой призмы, была представлена в виде, показанном на рис. 1 а, б. А в работе [2] предполагалось, что в призме треугольного сечения домены должны иметь треугольную форму (рис. 1 в).

Микромагнитные расчеты доменных структур в одноосных магнетиках, проведенные в [3] для прямоугольной призмы $Ni_{80}Fe_{20}$ размером 250х500х1000 нм и в [4] для бесконечно длинной призмы *Co* с квадратным поперечным сечением 190х190 нм, показали, что в этих образцах доменные структуры должны иметь вид, показанный на рис. 1а. Относительно вида доменных структур в призме треугольного сечения сложились противоречивые мнения. В связи с этим цель настоящей работы состояла в расчете доменных структур в призме треугольного сечения без использования предварительных представлений о виде доменной структуры.

ПОСТАНОВКА ЗАДАЧИ

Рассматривалась бесконечно длинная монокристаллическая призма, поперечным сечением которой является равнобедренный прямоугольный треугольник с расположенной на нем координатной системой. Ось *Ox* и ось легкого намагничивания ориентированы по гипотенузе, а ось *Oz* ортогональна се-

чению. Предполагалось, что намагниченность *M* зависит только от координат х и у. Уравнение Ландау - Лифшица для рассматриваемой задачи в безразмерной форме имеет вид [2]:

$$\frac{\partial m}{\partial \tau} = m \times H - \alpha m \times (m \times H), \tag{1}$$

где *H* – вектор эффективного поля с компонентами:

$$H^{x} = -\frac{\partial U}{\partial x} + \overline{A}\Delta m^{x} + 2\overline{K}m^{x},$$

$$H^{y} = -\frac{\partial U}{\partial y} + \overline{A}\Delta m^{y}, \quad H^{z} = \overline{A}\Delta m^{z}, \quad \overline{A} = \frac{2A}{M_{s}^{2}L^{2}},$$

A – константа обмена, L – длина ги́потенузы в сечении призмы, $M_s = |M|$, $m = M/M_s = (m^x, m^y, m^z)$ – единичный вектор; $\overline{K} = K/M_s^2$; K – константа магнитной анизотропии; $\tau = t\gamma M_s$, t – время, γ – гиромагнитное отношение, α – параметр, определяющий вклад диссипативного члена. В расчетах использовалось значение $\alpha = 0,2$.

Потенциал магнитостатического поля *U* находится из решения задачи:

$$\Delta U = \begin{cases} 4\pi \nabla \cdot m & \text{внутри кристалла,} \\ 0 & \text{вне кристалла,} \end{cases}$$
(2)

 $\frac{\partial U}{\partial n} + \frac{\partial U}{\partial (-n)} = -4\pi (mn)$ на поверхности кристалла, (3)

где *n* – внешняя нормаль к поверхности.

Без учета поверхностной энергии для уравнения (1) на гранях монокристалла выполняется условие [2]: $\partial m/\partial (-n) = 0$.

Равновесные состояния системы находились вычислением стационарных решений дискретного аналога уравнения (1). Задача (2)-(3) решалась методом, описанным в работе [4]. Шаг расчетной сетки во всех случаях выбирался меньше характерной ширины доменной границы $\delta = \sqrt{A/K}$. Приводимые ниже результаты получены варьированием безразмерных параметров A и K, зависящих от магнитных свойств и размера магнетика вблизи значений $\overline{A_0} = 3.58 \cdot 10^{-3}$, $\overline{K_0} = 1.984$.

РЕЗУЛЬТАТЫ РАСЧЕТОВ

При изменении параметров в пределах $0.1\overline{A_0} \le \overline{A} \le 1.5\overline{A_0}$, $0.5\overline{K_0} \le \overline{K} \le 4\overline{K_0}$ получены доменные структуры, которые можно разделить на 4 вида, показанные на рисунках 2-4. Треугольная доменная структура на рис. 2 соответствует представленной в работе [2] (рис. 1в). Двухполосная и трехполосная структуры, показанные на рис. 3, соответствуют представленной в работе [1] (рис. 1б). Доменная структура на рис. 4 является промежуточной и сочетает в себе элементы треугольной и полосовой. Таким образом, подтверждается возможность существования доменных структур обоих видов, которые в работах [1, 2] рассматривались в качестве исходных предположений, а не являлись решениями каких-либо задач. Значения параметров \overline{A} и \overline{K} , при которых возможно равновесное существование различных доменных структур, показано на фазовой диаграмме (рис. 5).

Как видно на диаграмме, при малой кристаллографической анизотропии \overline{K} и достаточно больших значениях параметра \overline{A} (ле-

Рисунок 1. Доменные структуры в монокристалле, представленные: а), б) – в работе [1]; в) – в работе [2].

вый верхний угол) в равновесном состоянии возможна только трехдоменная конфигурация (рис. 2). Уменьшение параметра \overline{A} при малых фиксированных \overline{K} (левый нижний угол), которое можно интерпретировать как увеличение размера монокристалла L при фиксированных магнитных свойствах материала A, K и M_s , должно приводить к увеличению количества доменов. В результате появляется многодоменная структура, содержащая домены различной формы (рис. 4). Увеличение анизотропии \overline{K} приводит к преимущественной ориентации намагниченности вдоль ОЛН. При этом примыкающие к

Рисунок 2. Треугольная доменная структура $\overline{A} = 0.2 \overline{A_0}$, $\overline{K} = 0.75 \overline{K_0}$.

Рисунок 4. Промежуточная доменная структура, соответствующая данной структуре точка на фазовой диаграмме с координатами $(0.5K_0; 0.1A_0)$.

122 ВЕСТНИК ОГУ № 1/ЯНВАРЬ`2007

Колесников П.Н., и др.

Микромагнитное моделирование доменных структур...

левой и правой граням монокристалла домены треугольного сечения существенно уменьшаются в размерах (рис. 3). Увеличение количества полос с уменьшением \overline{A} от двух (правый верхний угол) до трех (правый нижний угол) объясняется увеличением размера монокристалла.

Относительно доменных конфигураций за пределами границ изменения параметров \overline{A} и *K*, приведенных на диаграмме, можно сделать следующее замечание. При больших \overline{A} (малых L) возможно только однодоменное состояние монокристалла. В этом случае при достаточно больших \overline{K} намагниченность из-за высокой анизотропии ориентируется вдоль ОЛН, при малых \overline{K} – в продольном направлении (вдоль оси Oz). В последнем случае ориентация в продольном направлении оказывается энергетически выгоднее поперечной, поскольку обеспечивает нулевую магнитостатическую энергию системы, понижение которой компенсирует рост энергии анизотропии. При малых А (больших L) можно ожидать появления но-

	V														
5 Ā₀			•	D	D	D	D	D	D	D	D	D	D	D	D
4 ⊼₀	•	•	•	D	D	D	D	D	D	D	D	D	D	D	D
3 Ā₀	•	•	•	D	D	D	D	D	D	D	D	D	D	D	D
2 Ā0	*	٠	٠	D	D	D	D	D	D	D	D	D	D	D	D
1 Ā0		٠	•	*	D	D	D	D	D	D	D	D	D	D	D
oĀ			•		•	D	D	D	D	D	D	D	D	D	D
9 Ā₀	•	•	•	•	•	D	D	D	D	D	D	D	D	D	D
8 ⊼₀		٠		٠		D	D	D	D	D	D	D	D	D	<i>с</i> в)
.7Ā₀		•	•	ർ	(ພື້)	D	D	D	D	D	D	ക	ക	æ	(ใ)
0.6Ā0	•	٠	•	ർ	(ພື້)	പ്പം	æ,	ሌ	ക	ብ ን	ella)	ക	ക	æ	_የ ትን
. 5 Ā₀	•	(ພື້)	ඨ ා	ർ	(ພື້)	ඣ	ዊን	የ ትን	ժծ	ብ ኑ	₽,	ക	ക	el.	(ใ)
.4 Ā₀	•	ඛ	ඪ	ർ	(ພື້)	പ്ക	ę,	ዲ	ტ	æ,	⟨₽⟩	ക	ക	æ	æ
.3Ā₀	(ພື້)	ເພື່	ເພື່າ	ർ	ർ	ඣා	æ	ሌ	ക	A >	д ,	ო	ക	. ₽.)	(ł)
0.2Ā	ർ	ເພື່ອ	ඛා	ർ	(້ພ	ഷം	ക	ሌ	ക	ሌ	ოს	ക	ക	ക	ക
0.1Ā0	ω	v	w	.ක	æ	ക	æ	ሌ	ക	ሌ	el,	d)	ക	ሌ	ሌ
L	1K0					2 k				зк₀					4 ¯ ₀

Рисунок 5. Фазовая диаграмма. Символами представлены: ▲ – треугольная доменная структура (рис. 2), D – двухполосная доменная структура (рис. 3), t – трехполосная доменная структура (рис. 3), w – переходная доменная структура (рис. 4). В скобки заключены метастабильные структуры.

вых доменных структур, однако такие вычисления требуют сеток с большим числом ячеек.

- 2. Браун У.Ф. Микромагнетизм / У.Ф. Браун. М.: Наука, 1979. 160 с.
- 3. Hertel R. Computation of the magnetic domain structure in bulk permalloy / R. Hertel, H. Kronmuller // Phys. Rev. B. 1999. V.60, №10. P.7366-7378.
- Толстобров Ю.В. Влияние метода минимизации функционала свободной энергии на результаты микромагнитного моделирования / Ю.В. Толстобров, Н.А. Манаков, А.А. Черемисин // ФММ. 2004. – Т. 98, №3. – С. 16-22.

12.10.06 г.

Список использованной литературы:

^{1.} Ландау Л.Д. К теории дисперсии магнитной проницаемости ферромагнитных тел / Л.Д. Ландау, Е.М. Лифшиц // Ландау Л.Д. Собрание трудов. – М.: Наука, 1969. – Т. 1. – С. – 128-143.