Кобзев Г.И.

(заведующий лабораторией компьютерного моделирования Института микро- и нанотехнологий ОГУ, кандидат химических наук)

ЗАВИСИМОСТЬ ЛЮМИНЕСЦЕНЦИИ МОЛЕКУЛЯРНОГО КИСЛОРОДА ОТ СОРТА И ЧИСЛА АТОМОВ, ВХОДЯЩИХ В СОСТАВ КОМПЛЕКСА, И ЧИСЛА МОЛЕКУЛ ОКРУЖЕНИЯ КИСЛОРОДА

На основе неэмпирических и полуэмпирических расчетов выявлен первичный кооперативный эффект влияния молекул растворителя на люминесценцию молекулярного кислорода.

Молекула кислорода отличается от большинства органических и неорганических молекул уникальной способностью к обменным взаимодействиям, что связано со спецификой структуры двух внешних вырожденных по энергии молекулярных орбиталей (МО) π_g , на каждой из которых расположено по одному электрону с одинаковыми спинами. Обе π_g МО взаимно ортогональны и обладают разной орбитальной симметрией [1].

Основное электронное состояние молекулы кислорода представляет собой триплетное состояние ($X^{3}\Sigma-_{s}$). Первые два возбужденных состояния являются синглетными ($^{1}\Delta_{o}$) и ($b^{1}\Sigma_{o}^{+}$), причем состояние (¹Δ_o) дважды вырождено, и его компоненты обозначают ($a^{1}\Delta_{a}$), ($a^{'1}\Delta'_{a}$). Вторая компонента (a'1Δ'_g) отличается по своей структуре от $(a^{1}\Delta_{a})$ и обычно называется темновой. Энергия возбуждения из основного триплетного состояния молекулы кислорода в первые возбужденные синглетные состояния лежит в инфракрасной области и составляет 0.98 эВ для состояний (a¹Δ_o), (a^{'1}Δ_o) и 1.63 эВ для состояния (b¹ Σ_{a}^{+})[1]. Излучательные электродипольные переходы $(a^{1}\Delta_{g}) \rightarrow (X^{3}\Sigma_{g}), (b^{1}\Sigma_{g}) \rightarrow$ $(a^{1}\Delta_{o})$ и $(b^{1}\Sigma_{o}^{+}) \rightarrow (X^{3}\Sigma_{o}^{-})$ в изолированной молекуле кислорода запрещены. Первый переход запрещен трижды (орбитально, по спину и четности), второй дважды (орбитально и по четности), третий по спину и четности, однако экспериментально наблюдаются как низкоинтенсивные магнитные дипольные переходы $(a^{1}\Delta_{g}) \rightarrow (X^{3}\Sigma_{g}), (b^{1}\Sigma_{g}^{+}) \rightarrow (X^{3}\Sigma_{g})$ и квадрупольный переход ($b^1\Sigma_{a}^+$) \rightarrow ($a^1\Delta_{a}$). Природа формирования магнитных дипольных переходов $(a^{1}\Delta_{g}) \rightarrow (X^{3}\Sigma_{-g}), (b^{1}\Sigma_{-g}^{+}) \rightarrow (X^{3}\Sigma_{-g})$ и квадрупольного перехода $(b^1\Sigma_{g}^+) \rightarrow (a^1\Delta_{g})$ в изолированной молекуле кислорода впервые рассмотрена в работах Б.Ф. Минаева [2], там же приведены численные величины, характеризующие интенсивности этих переходов.

Люминесценция молекулярного кислорода определяется излучательным переходом

 $(a^{1}\Delta_{r}) \rightarrow (X^{3}\Sigma - A)$. Впервые такой переход очень малой интенсивности, связанный с дезактивацией синглетного кислорода $a^{1}\Delta_{g}$, наблюдался в газовой фазе для паров бензола в кислороде. В жидкой фазе люминесценцию кислорода впервые наблюдал А.А. Красновский (мл.) в 1972 г. при освещении насыщенных воздухом растворов пигментов [3]. Возбужденное синглетное состояние ($a^1\Delta_{o}$) получали в процессе сенсибилизированного переноса энергии. При этом Красновский (мл.) изучал люминесценцию синглетного кислорода в растворах сенсибилизаторов, растворители которых (фреоны, сероуглерод, четыреххлористый углерод и др.) слабо тушат синглетный кислород [4]. Автор утверждал, что спектр люминесценции не зависит от природы растворителей и пигментов. В дальнейшем, при исследовании люминесценции молекулярного кислорода, была обнаружена зависимость интенсивности и излучательного времени жизни т состояния (а¹Δ₂) от свойств окружающей среды (в газовой фазе) [5] и свойств растворителя (в жидкой фазе) [6]. Изучению характеристик (а – Х) и (b - a) и (b - X) переходов в зависимости от среды посвящено множество экспериментальных и теоретических работ [7-26]. Эта проблема и в настоящее время активно обсуждается в научной литературе [27, 28].

Существует несколько механизмов, объясняющих индуцирование излучательного электродипольного перехода (a - X) под влиянием окружения и «заимствования» им интенсивности из других разрешенных синглет-синглетных и триплет-триплетных переходов молекул растворителя [18, 19].

В 1985 г. Б.Ф. Минаевым было показано [18], что в бимолекулярных комплексах столкновений (к.с.), содержащих кислород, излучательная вероятность электродипольного перехода (a - X) в кислороде «заимствуется» из индуцируемого в процессе столкновения электродипольного перехода (b - a).

Кобзев Г.И.	Зависимость	люминесценции	молекулярного	кислорода	οτ	сорта	и	числа	атомов	<i>}</i>

 $M(a - X) = C_{bX} M(b - a) + Q...,$ (1) где M(a - X) и M(b - a) – величины электродипольных моментов переходов, а C_{bX} – матричный элемент оператора спин-орбитального вза-

имодействия, $C_{b,x} = \frac{\langle X | Hsdb \rangle}{E_b - E_X}$, Q – сумма вкладов всех остальных величин, определяющих интегральную величину M(a – X), которая, по мнению Минаева, много меньше первого слагаемого. Эта идея была развита в работах [20, 21], получила экспериментальное подтверждение и научное признание [8-15]. Напомним, что для изолированной молекулы O₂ соответствующая переходу b–а экспериментально наблюдаемая полоса Ноксона [29] в газовой фазе проявляется как квадрупольный переход. Электро-дипольный излучательный переход b–а в молекуле кислорода запрещен, поэтому данный механизм не проявляется для изолированных молекул кислорода.

В комплексах столкновения механизм индуцирования b-а связан с искажением структуры одной из вырожденных π_g молекулярных орбиталей (MO) кислорода вследствие привнесения в ее состав дополнительных примесей от коэффициентов атомных орбиталей (AO) партнера по столкновению. Вторая $\pi_g O_2$ в к.с. остается практически неизменной на всем интервале расстояний при сближении молекул [21, 30].

Преобладающий вклад в величину M(b-a), привносит разность дипольных моментов π_g^x и π_g^y МО кислорода [20].

 $M(b-a) = 1/2[\mu(\pi_g^{x}) - \mu(\pi_g^{y})] + \dots$ (2)

Немаловажное значение имеют вклады, обусловленные состояниями переноса заряда (СПЗ). Показано, что для полярных растворителей возможны случаи, когда преобладающим вкладом в величину М (b – а) является слагаемое, связанное с постоянным дипольным моментом состояний СПЗ [25], наряду со значительным вкладом и от слагаемого $1/2[\mu(\pi_g^x) - \mu(\pi_g^y)]$.

Взаимное влияние сталкивающихся партнеров приводит, в той или иной степени, к искажению МО индивидуальных молекул. Наиболее подвержены изменению π_g МО кислорода. На значительных расстояниях МО комплекса практически не отличаются от МО сталкивающихся молекул. При уменьшении межмолекулярного расстояния R МО комплекса наряду с коэффициентами АО кислорода содержат ненулевые вклады от всех коэффициентов «чужих» молекул.

Отсюда следует ожидать зависимости M(b-a) и M(a-X) от числа молекул окружения кислорода, их взаимного расположения, от сорта и числа атомов, входящих с состав комплекса. Расчеты M(b-a) и M(a-X) в тримолекулярных комплексах полностью подтвердили предполагаемые зависимости.

Зависимость M(b-a) и M(a-X) от сорта и количества атомов, входящих в состав молекулы би-, трии многомолекулярных комплексов

Анализ расчетов свидетельствуют о пропорциональной зависимости М(b-a) от заряда ядра атома молекулы, входящей в состав бимолекулярного комплекса. Например, наличие в составе кислородного комплекса атомов третьего периода приводит к возрастанию M(b-a) по сравнению с бимолекулярными комплексами, содержащими атомы второго периода (табл. 1-3). Результаты расчетов характеристик моментов перехода b→а в модельном комплексе Zn–O₂ показывают, что его величина возрастает более чем на 5 порядков по сравнению с изолированной молекулой кислорода. Это согласуется с экспериментальными результатами, где отмечается, что М(b – a), М(а–Х) в комплексах столкновений могут возрастать на 4-5 порядков в присутствии парамагнитных растворителей [31].

Переход ${}^{5}[a'{}^{1}\Delta'_{g}{}^{5}D_{4}]^{0} \rightarrow {}^{5}[{}^{3}\Sigma'_{g}{}^{5}D_{4'3,2,1,0}]^{0}$ соответствует излучательному вертикальному переходу $a'{}^{1}\Delta'_{g} > X {}^{3}\Sigma'_{g}$ в молекуле кислорода в контакте с атомом Fe. Цифры свидетельствуют, что величина момента перехода M (a'-X) из темновой компоненты a' имеет ненулевое значение даже при 4.6Å, а при 3.2Å становится больше, приблизительно, в 1000 раз, чем величина излучательного момента магнитно-дипольного перехода M (a - X₁) в чистом кислороде.

Из таблицы видно, что величина излучательной вероятности A(b-a) в модельном комплексе ⁶[O₂-Mn] возросла на 6 порядков по сравнению с чистым кислородом. Величина A(a \rightarrow X) на большом межмолекулярном расстоянии 7Å практически совпадает с экспериментальным значением A(a \rightarrow X) в чистом кислороде A(a \rightarrow X) = 1,9·10⁴, а при меньших расстояниях резко возрастает, причем для одинаковых расстояний R коэффициент Эйнштейна излучательной вероятности A(a'-x) для кислородных комплексов железа на 3 порядка меньше, чем в (O₂-Mn). Возрастание A(a \rightarrow X) в кислородных комплексах, содержащих металл, согласуется с

Таблица 1. Характеристики моментов перехода b-a, b-a' в модельном комплексе ¹[Zn–O,]

R(Zn–O ₂), Å	3.0	2.5
$\begin{array}{c} M \ (b \Box \ a) \ (1 \Box \ 3), \ \mathcal{I} \\ A \ (b \bullet \ a) \ (1 \bullet \ 3), \ c^{-1} \\ \tau_r (b \bullet \ a) \ (1 \bullet \ 3), \ c \end{array}$	5.06.10 ² 3.09.10 ² 3.2.10 ⁻³	$0.1591 \\ 2.18 \cdot 10^3 \\ 4.5 \cdot 10^{-4}$
$\begin{array}{l} {{\cal A}} E \ (b \Box \ a') \ (2 \Box \ 3), \ \vartheta B \\ M \ (b \Box \ a') \ (2 \Box \ 3), \ {{\cal A}} \\ A \ (b \bullet \ a') \ (2 \bullet \ 3), \ c^{-1} \\ \tau_r \ (b \bullet \ a') \ (2 \bullet \ 3), \ c \end{array}$	0.6 0.0516 1.9•10 ⁻³ 0.1187	$\begin{array}{c} 0.59 \\ 0.1896 \\ 1.18 {\cdot} 10^3 \\ 8.5 {\cdot} 10^{-4} \end{array}$

Таблица 2. Характеристики вертикального квинтет-квинтетного электродипольного перехода

 ${}^{5}({}^{1}\!\!\mathcal{I}'_{g}\,{}^{5}\!\!Fe^{0}) {\rightarrow} {}^{5}\!(X^{3}\!Y_{g}^{-}{}^{5}\!\!Fe^{0})$ в комплексе столкновений

 ${}^{5}(Fe - O_{2})^{0}$, согласно неэмпирическим расчетам в базисе 6-31G с учетом двукратных электронных возбуждений

R(Fe-O ₂),Å	М (а⊣ Х), Д	A (a□-X),c ⁻¹
4.6	0.000096	3.1507·10 ⁻³
3.35	0.000420	5.9972·10 ⁻²
3.2	0.000755	1.9236-10-1

Таблица 3. Величины разрешенных секстет-секстетных электродипольных моментов переходов в комплексе ⁶[O₂-Mn], соответствующих b-a, b-a', a-X, a-X запрещенным переходам в молекуле O₂

Величины R(O ₂ -Mn)	7 Å	5 Å	4 Å	3 Å
M(b-a), Д	9•10 ⁻⁶	6,06•10 ⁻²	8,72•10 ⁻²	1,53•10 ⁻¹
A(b-a), c^{-1}	$1,48 \cdot 10^2$	$1,43 \cdot 10^3$	$2,95 \cdot 10^3$	$9,29 \cdot 10^3$
f(b-a)	2 • 10 ⁻⁶	1,9•10 ⁻⁵	3,8•10 ⁻⁵	$1,19 \cdot 10^{-4}$
$\tau_r(b \rightarrow a), c$	6,7•10 ⁻³	7,0•10 ⁻⁴	3,4•10 ⁻⁴	1,1•10 ⁻⁴
M(b-a'), Д	1,33•10 ⁻²	4,62•10 ⁻²	9,19•10 ⁻²	6,84•10 ⁻²
$A(b-a'), c^{-1}$	6,9	8,31•10 ²	$1,86 \cdot 10^3$	$3,29 \cdot 10^3$
f(b-a')	1•10-6	1,1•10 ⁻⁵	4,3•10 ⁻⁵	2,4•10 ⁻⁵
$\tau_r(b \rightarrow a'), c$	0,14	1,2•10 ⁻³	5,3•10 ⁻⁴	3,0•10 ⁻⁴
М(а-х), Д	9•10 ⁻⁶	9,79•10 ⁻⁴	5,62•10 ⁻³	$2,72 \cdot 10^{-2}$
$A(a-x), c^{-1}$	2,93•10-5	3,73•10 ⁻¹	$1,23 \cdot 10^{1}$	$2,85 \cdot 10^2$
Е(а-х), э,В,	1,33	1,33	1,33	1,33
f(a-x)	0	0	1•10-7	$4 \cdot 10^{-6}$
$\tau_r(a \rightarrow X), c$	34129	2,7	0,08	0,0035
М(а'-Х), Д	7,7•10 ⁻⁶	3,36•10 ⁻³	1,14•10 ⁻²	$2,0 \cdot 10^{-2}$
$A(a'-X), c^{-1}$	2,32•10-3	4,39	$5,1 \cdot 10^{1}$	$1,54 \cdot 10^2$
Е(а'-Х), э,В,	1,33	1,33	1,33	1,33
f(a'-X)	0	0	1•10 ⁻⁶	2•10 ⁻⁶
$\tau_r(a' \rightarrow X), c$	431	227	0,02	0,006

теоретическими и экспериментальными данными [32, 33].

Приведенные цифры показывают возрастание в 1000 и более раз переходов (b - a), $(a \rightarrow X)$ в кислородных комплексах, содержащих металл, по сравнению с чистым кислородом.

Увеличение числа атомов в различных молекулах ближайшего окружения кислорода для одного и того же R также приводит к изменению излучательных переходов (b – a) и ($a \rightarrow X$) (табл. 4, 5).

Численные значения для индуцированного электродипольного перехода а–X приведены в [25]. Например, в комплексе O_2 –CH₃OH величина M(a-X)= 0,989·10⁻⁴ eÅ (R=3,0Å).

Таблица 4. Величина электродипольного перехода b-а в бимолекулярных комплексах столкновений O₂-M. Расчет в приближении MINDO/3 +KB2

Комплекс	O ₂ -H ₂	O ₂ -N ₂	$\Omega_{2} = C \Omega_{2}$	O-CH-OH	050.	$\Omega_{n-CS}}}}}}}}$
O M	D 2 0 3	D 2 0 2	D 201	D 201	D 2 2	D 2 4 Å
02-M	R=2,8A	R=2,8A	R=3,0A	R=3,0A	R=3,2A	R=3,4A
M(b-a), eÅ	0,0012	0,0024	0,00655	0,011	0,00875	0,00857
Комплекс	$O_2 - H_2$	$O_2 - H_2O$	$O_2 - CO_2$	O ₂ -NH ₃	O2-CH3OH	$O_2 - C_2 H_4$
O ₂ -M	R=2.4Å	R=2.6Å	R=2.8Å	R=2.4Å	R=3 2Å	R=3.0Å

M(b-a),eÅ 0,0047 0,0052 0,00732 0,01145 0,004871 0,017

Таблица 5. Неэмпирические расчеты в рамках пакета программ GAMESS с учетом КВ4, в базисе 6-31G энергетических и спектральных характеристик электродипольного перехода b-а в бимолекулярных комплексах столкновений

 O_2 -M, M = NH₃, C_2H_4 , NH₂CH₃, C_6H_6

Комплекс О2-М	O ₂ NH ₃ R=3,0Å	O ₂ -C ₂ H ₄ R=3,2Å	O ₂ -NH ₂ CH ₃ R=3,0Å	O ₂ -C ₆ H ₆ R=3,0Å
$M(b-a), ea_0$	0,0108	0,0163	0,02174	0,0295
$\Delta E(b-a)$, Э,В,Е	0,68	0,67	0,69	0,663
f (b-a)	2 10 ⁻⁶	4,10 10-6	8,10 10 ⁻⁶	14 10 ⁻⁶
A (b-a), c ⁻¹	41,8	98,3	167,	274,6

Таблица 6. Величины M(b – a) в двойных O, – M и тройных комплексах O₂ -M-C₂H₄; R(O₂ – N)= R(O₂ - C₂H₄)=2,8Å`; R(O₂ – H₂O)= R(O₂ - C₂H₄) = 3,2Å`

Комплекс	M(b–a), eÅ	Комплекс	M(b–a), eÅ
O_2-N_2	0,0024	O_2-H_2O	0,0004
$O_2 - C_2 H_4$	0,0163	$O_2 - C_2 H_4$	0,0163
$O_2 - N_2 - C_2 H_4$	0,018	$O_2 - H_2O - C_2H_4$	0,0169

Полученные данные свидетельствуют, что $M(b-a)(O_2-C_6H_6) > M(ba)(O_2-C_2H_4) > M(b-a)(O_2-CH_3OH, O_2-NH_3, O_2-CO_2, O_2-H_2O, O_2-H_2) даже при расстоянии R большем, чем R для перечисленных молекул, поэтому следует ожидать, что при R <math>(O_2-C_6H_6) = R(O_2-CH_3OH, O_2-NH_3, O_2-CO_2, O_2-H_2O, O_2-H_2)$ ряд еще более усилится. Это доказывает зависимость M(b-a), а следовательно, и M(a-X) от Z атома, числа атомов – n, содержащихся в молекуле M, и числа молекул – N ближайшего окружения кислорода.

Важно отметить последнее положение, согласно которому величина M(b – a) представляет собой аддитивную величину (табл. 6). При неизменном межмолекулярном расстоянии в тройных комплексах она больше, чем в бимолекулярных, и примерно равна сумме [22, 34]:

 $M(b-a)(C_2H_4-O_2-M)=$

 $= \mathbf{M}(\mathbf{b}-\mathbf{a})(\mathbf{O}_2 - \mathbf{\mathcal{Y}}) + \mathbf{M}(\mathbf{b}-\mathbf{a})(\mathbf{O}_2 - \mathbf{M})$

Теоретические исследования ab initio [28] также подтверждают эти выводы.

Аддитивность величины M(b – a) может быть названа первичным кооперативным эффектом, поскольку при добавлении в раствор нового растворителя величина M(b – a) будет определяться слагаемыми:

Кобзев Г.И. Зависимость люминесценции молекулярного кислорода от сорта и числа атомов...

 $M(b-a)_{PACTBOP} =$ = $M(b-a)_{PACTB1} + M(b-a)_{PACTB2} + M(b-a)_{CEHC}$, но при этом может возрастать или убывать, в зависимости от сольватных свойств молекул полученной смеси. На рисунках 1, 2 наглядно представлены вклады в одну из π_{g} МО кислорода от нескольких молекул ближнего окружения кислорода, подтверждающие аддитивные свойства М(b-а)_{раствора}.

Рисунок 1 демонстрирует структуру обеих π_д МО кислорода в тройном комплексе $(\dot{\Im} - O_2 - \Im)$, где \Im – этилен. Видно, что одна из π_σ существенно искажена и имеет значительные примеси от АО двух молекул этилена. Другая π_{g} МО кислорода в тройном комплексе остается «чистой». Несмотря на то, что две молекулы этилена расположены симметрично относительно молекулы кислорода, их вклады в М(b-а)_{РАСТВОРА} не уничтожаются и не компен-

сируют друг друга. Расчет произведен на фиксированной геометрии ограниченным методом Хартри Фока (ROHF) для открытых оболочек с использованием базиса 6-31G в рамках пакета программ HyperChem. Оптимизация комплекса проведена на предварительном этапе методом РМЗ. Структура π_g МО кислорода в тройном комплексе $\Im - O_2 - \Im$ имеет следующий вид:

 $\begin{array}{l} \pi_g^{\ Z}(O_2) & -0.9[(p_Z)(O) + (p_Z)(O)](O_2) \\ \pi_g^{\ y}(O_2) & 0.845[(p_y)(O) - (p_y)(O)](O_2) \\ & + 0.42[(p_y)(C_1)(\Theta)_1 - (p_y)(C_2)(\Theta)_1] \\ & - 0.415[(p_y)(C_1)(\Theta)_2 - (p_y)(C_2)(\Theta)_2] \end{array}$

Определяющая роль сенсибилизатора в формировании величин M(b-a) и M(a-X)

Согласно расчетам в двойных и тройных комплексах столкновения, а также в кислородных системах, содержащих большое количество

Рисунок 1. Изображение структуры p_a^y и p_a^z (O₃) в тройном контактном комплексе $C_3H_4 - O_3 - C_3H_4$. Заряд комплекса q = 0, мультиплетность M = 3.

Рисунок 2. Изображение структуры двух ортогональных p_g MO (O₂) в многомолекулярной кислородной системе C₂H₄ – O₂ – 10(CH₃OH), моделирующей сольватные свойства растворителя. Заряд системы q = 0, мультиплетность M = 3. Расчет проведен методом HXФ PM3. p_g MO (O₂) №55 альфа E = -13.22 эВ; p_g MO (O₂) №56 альфа E = -13.17 эВ

Естественные науки

молекул, вклад от слагаемого, величина которого определяется АО, молекулы сенсибилизатора значительно больше, чем вклад от слагаемого, связанного с молекулами растворителя, расположенными в непосредственной близости от кислорода [35].

Это положение можно наглядно продемонстрировать (рис. 3, 4).

Неэмпирические расчеты M(b-a) u M (a-X)в кислородных комплексах, содержащих большие биоорганические молекулы, затруднительны, однако, оставаясь в рамках полуэмпирических методов, можно и в этом случае наглядно продемонстрировать наибольшие искажения в структуре только одной из двух $\pi_g MO O_2$. вызванные коэффициентами больших молекул, и подтвердив тем самым факт индуцирования излучательного электродипольного момента M(b-a), пусть на качественном уровне (рис. 3), и доказать, что малые молекулы окружения (моделирующие растворитель) в совокупности оказывают значительно меньшее влияние на величину M (b – a), чем, например, большие органические молекулы, находящиеся в непосредственной близости от кислорода (рис. 4). Степень искажения одной из МО π_g видна по присутствию дополнительных вкладов от АО партнера кислорода.

На рисунке 4 изображена система антрацен – кислород в окружении более 30 молекул воды. Исходя из графического изображения двух π_g МО кислорода, полученных в результате расчета методом ZINDO1, можно увидеть, что коэффициенты АО молекулы воды в π_g МО кислорода много меньше, чем коэффициенты АО молекулы антрацена.

Теоретические расчеты M(b-a) и M(a-X) в тройных кислородных комплексах столкновения $\Im - O_2 - M$, содержащих в своем составе этилен, кислород и молекулу $M = H_2$, N_2 , CO_2 , H_2O , CH_3OH , CCl_4 , показали, что при расчете величины M(b-a) наибольший вклад в одну из наиболее искаженных π_g MO кислорода привносят AO этилена – (Э) или бензола – (Б), вклады же от AO молекулы M в данную π_g MO совершенно незначительны [36, 37] (рис. 5, табл. 7).

Рисунок 3. Искаженная и неискаженная р MOO, в модельном комплексе металлопорфирин – O. В качестве металла выбран Mg. R(Mg – O.) = 2.438 E. Расчёт проведен методом ZINDO1 в рамках неограниченного Хартри – Фока. Заряд комплекса q = 0, мультиплетность M = 5. Рисунок дан в двух ракурсах.

Кобзев Г.И. Зависимость люминесценции молекулярного кислорода от сорта и числа атомов...

Наглядно этот результат отражается на величинах M(b-a) и M(a-X), которые в бимолекулярных комплексах с этиленом $O_2-C_2H_4$ или с бензолом $O_2-C_6H_6$ практически на порядок больше, чем в комплексах O_2-M , не содержащих, C_2H_4 , C_6H_6 (табл. 4, 5). И, наконец, расчеты в тройных комплексах $C_2H_4 - O_2 - M$ доказывают, что наибольший вклад в M(b-a) остается от C_2H_4 . Например, в тройном комплексе $M(b-a)(C_2H_4-O_2-N_2)=0,018$ еÅ`. Большая часть от цифры 0,018 еÅ` составляет $M(b-a)(O_2-\Theta) = 0,0163$ еÅ`, то есть вклад от этилена преобладающий, а незначительный остаток приходится на

вклад от молекулы М М(b–a)(O_2 – N_2) = 0,0024 еÅ` (табл. 6, рис. 5). Подобная тенденция сохраняется и для других комплексов.

Заключение

На основании полученного цифрового материала можно с уверенностью утверждать, что неполярный растворитель практически не оказывает влияния на люминесценцию кислорода, которая в основном будет определяться структурой и свойствами электронной оболочки сенсибилизатора, если молекулы растворителя расположены далеко от контактной пары

Рисунок 4. Искаженная №136 в – МО (1p $_{g}(O_{2})$) E = -11.37 э.В и неискаженная p_{g} МО №133 б – МО 2 $p_{g}^{g}(O_{2})$ E = -11.56 O_{2} в модельном комплексе антрацен – кислород в окружении 30 молекул воды.

Рисунок 5. Изображение структуры р.^{ух} (О.) в тройном контактном комплексе С.²Н₄ – О²₂ – СН₃ОН. Заряд комплекса q = 0, мультиплетность М = 3 МО №18 альфа UHF E = -11.00 эВ МЧПДП/3 НурегСhem

Таблица 7. Структура р_g МО кислорода в тримолекулярных модельных комплексах ${}^{1}[M...O_{2}...Э]^{0}$, $\Im = C_{2}H_{4}, M = N_{2}, C_{6}H_{6}, CCl_{4}$

¹ [M	O ₂ Э] ⁶	$^{0}, R(M-O_{2})$	$= R(O_2-\Im) = 3,0 \text{ Å}, \angle \alpha (M - O_2 - \Im) = 45^{\circ}$
М	Nº π _g ,	Е, э,В,	Стπуктуπа оπαитали
N ₂	$16 \pi_{g}^{X}$	-9,93	$[O_1(-0,54p_X) + O_2(0,54p_X)]O_2 +$
	č		$+ [O_1 (0,36p_Z) + O_2(-0,36p_Z)]O_2 +$
			+ $[C_6 (-0,15p_X) - C_3(0,23 p_X)] \rightarrow$ +
			+ $[N_9 (-0,0p_x) - N_{10}(0,0 p_x)]N_2$
	$18 \pi_{g}^{Z}$	-0,20	$[O_1 (0,69p_Z) + O_2(-0,69p_Z)]O_2 +$
			+ $[O_1 (-0,11p_X) + O_2(0,11p_X)]O_2 +$
			+ $[C_6 (-0,015p_Z) - C_3(0,017p_Z)] \Im$ +
			+ $[N_{12} (0,02p_X) + N_{12} (0,02p_Z)]N_2$
C_6H_6	$19 \pi_{g}^{Y}$	-9,72	$[O_1 (0,65p_Y) - O_2(0,65p_Y)]O_2 +$
			$+ [O_1 (-0,26p_Z) + O_2(0,25p_Z)]O_2 +$
			$+ [C_6 (0,013 p_Z) - C_4 (0,011 p_Z - C_3 (0,013 p_Z)] B$
	$24 \pi_g^2$	0,16	$[O_1 (-0.63p_Z) + O_2 (0.63p_Z)]O_2 +$
			+ $[O_1 (-0,25p_Y) + O_2(0,25p_Y)]O_2 +$
			$+ [C_6 (0,11p_Z) - C_5(0,14 p_Z + C_3(0,13 p_Z)]B$
CCl_4	$26 \pi_g^2$	-9,95	$[O_1 (0,63p_Z) - O_2(0,55p_Z)]O_2 +$
			+ $[C_4 (0,38p_Z) + (0,16 S)[H5-H6-H7+H8] \rightarrow +$
			+ [(0,0)] CCl ₄
	$31 \pi_g^{Y}$	-1,03	$[O_1 (-0.58 p_Y) + O_2 (0.56 p_Y)]O_2 +$
			+ $[O_1 (-0,36p_X) + O_2(0,21p_X)]O_2 +$
			+ $[C_3(-0,11p_Y)+C_4(0,11p_Y)]\Im -$
			$-(0,11S)[H5-H6-H7+H8]\Theta +$
			+ (0,02)[$S-P_X - P_Y + P_Z$] (C) CCl ₄ +
			$+ (0,01)[P_{Y} + P_{Y} + P_{Y} + P_{Y}] (Cl) CCl_{4}$

Естественные науки

кислород - сенсибилизатор. Существенные отклонения от данного положения при неизменном сенсибилизаторе будут наблюдаться только в том случае, если молекулы полярного (неполярного) растворителя будут расположены гораздо ближе к молекуле кислорода, и (или) их число в первом окружении увеличится, и (или) они будут содержать атомы с большим Z. Таким образом, по изменению излучательных характеристик люминесценции кислорода можно судить о сольватных свойствах растворителя.

- 2. Минаев Б.Ф. Влияние спин-орбитального взаимодействия на интенсивность магнитных дипольных переходов в молекуле кислорода // Изв. вузов. Сер. Физика 1978, № 9, с. 115 – 120.
- 3. Красновский А.А. (мл.) Люминесценция синглетного кислорода в растворах фотосенсибилизаторов // ЖПС. 1980. Т. 32. В. 5. C. 852-856.
- Красновский А.А. (мл.) Синглетный молекулярный кислород и первичные механизмы фотодинамического действия оптического излучения. Л.: Наука, 1981. С. 64-134.
- 5. Long G., Kearns D.R. Selection rules for the intermolecular enhancement of spin forbidden transitions in molecular oxygen // J. Chem. Phys. 1973, V. 59, № 10. P. 5729-5736.
- 6. Красновский А.А. (мл.) Люминесценция при фотосенсибилизированном образовании синглетного кислорода в растворах / / Возбуждение молекулы. Кинетика превращений. - Л.: Наука, 1982. С. 32-60.

- 7. Красновский А.А. мл. // Автореферат дис. докт. биол. наук. И. 1982. С. 52-60.
 7. Красновский А.А. мл. // Автореферат дис. докт. биол. наук. И. 1983.
 8. Fink E.H., Setzer K.D., Wildt J., Ramsay D.A., and Vervloet M. // Int. J. Quant. Chem., 39: 287, 1991.
 9. J. Wildt E.H., Fink P., Biggs R.P., Wayne and A.F. Vilesov. // Chem. Phys., 159:127,1992.
 10. Ogilby P.R. // Ace. Chem. Res., 32: 512, 1999.
 11. Darmanyan A.P. // Khim.Fiz., 6: 1192, 1987. (USSR), 67: 453, 2000.
 12. Райченок Г.Ф., Бытева И.М., Салохидинов К.И., Болотько Л.М. Возрастание интенсивности люминесценции кислорода под воздействием посторонних газов // Опт. и спектр. 1980. Т. 19. В. С. 1208 – 1211.
- 13. Losev A.P., Byteva I.M., and Gurinovich G.P. // Chem. Phys. Lett., 143: 127, 1988.
- 14. Schmidt R and Bodesheim M. // J. Phys. Chem., 99: 15919, 1995
- 15. Scurlock R.D., Nonell S., Braslavsky S.E., and Ogilby P.R. // J. Phys. Chem., 99: 3521, 1995.
- 16. Kearns D.R. Physical and chemical properties of singlet molecular oxygen // J. Chem. Rev., 1971, V. 71. P. 395.
 17. Minaev B.F. Intensities of Spin-Forbidden Transitions in Molecular Oxygen and Selective Heavy Atom Effects // Int. J. Quant. Chem 1980. V. 17. P. 367.
 18. Минаев Б.Ф. Теория влияния растворителя на радиационную вероятность перехода a-X в молекуле кислорода // Опт. и
- спектр. 1985. Т. 58. №6. С. 1238 1241.

- Keins D.R. Physical and chemical properties of singlet molecular oxygen // J. Chem. Rev., 1971, V. 71. P. 395.
 Minaev B.F., Lunell S., Kobzev G.I. The influence of intermolecular interaction the forbidden nier-IR (Theochem), V.284. 1993. P.1-9.
 Minaev B.F., Lunell S., Kobzev G.I. Collision-induced intensity of the b(¹S₂⁺)®a(¹D₂) transition in molecular oxygen: Model calculations for the collision complex O₂+H₂//Int. J.Quant. Chem.V.50, 1994 c. 279-292. 8⁵. B.F. Minaev, S. Lunell, and G.I. Kobzev. Int. J. Quant. Chem., 50:279, 1994
- Int. J. Quant. Спет., 50:2/9, 1994 22. Минаев Б.Ф., Иванова Н.М., Федулова И.Е., Кобзев Г.И., Мулдахметов З.М. Кооперативное влияние молекул С_.H₄ и H₂ на переходы b-а и а-Х в молекуле O₂ в тройном комплексе // ЖПС. 2000. №4, т.67, с.453-456. 9. В.F. Minaev, N.M. Ivanova, I.V. Fedulova, G.I. Kobzev, Z.M. Muldahmetov J. Appl. Spectrosc. 23. Minaev B.F. Solvent Induced Emission of Singlet Molecular Oxygen //J. Mol. Struct. THEOCHEM, 183:207, 1989.
- 24. Минаев Б.Ф. Автореф. дис. д.х.н., Москва, изд. ИХФ, 1983, с. 150.
- 25. Кобзев Г.И. Теоретическое исследование основного и первых возбужденных электронных состояний кислородных комп-26. Schweitzer C., Schmidt R. Physical Mechanisms of Generation and Deactivation of Singlet Oxygen // J. Chem. Rev., 2003, V. 103.
- P. 1685-1757

- P. 1685-1757.
 27. Minaev B.F., Kobzev G.I. Response calculations of electronic and vibrational transitions in molecular oxygen induced by interaction with noble gases // J. Spectrochimica Acta Part A 00 (2003) p.1-24.
 28. J. F. Noxon J. F. // Can. J. Phys., 39:1110, 1961.
 29. Кобзев Г.И., Минаев Б.Ф., Мулдахметов З.М., Мартынов С.И., Безносюк С.А., Мозговая Т.А. Механизм возрастания интенсивности a(¹D₂) b(¹S₂⁺) перехода в молекуле кислорода под влиянием межмолекулярного взаимодействия // Журн. «Оптика и спектроскопия» 1997. т.83, №1, с. 64-68.
 30. Belford R. E., Seely G., Gust D., Moore. T. A., Moore A., Cherepy N. J., Ekbundit S., Lewis J. E., Lin S. H. // J. Photochem. Photobiol. A: Chem. 1993, 70, 125.
 31. Джагаров Б.М. Гурикираци Б.И. Новиценков В.Е. Садохистичнов К.И. Шульга А.М. Ганжа В.А. Фотосенсибилизиро-
- 31. Джагаров Б.М., Гуринович Г.П., Новиченков В.Е., Салохитдинов К.И., Щульга А.М., Ганжа В.А. Фотосенсибилизированное образование синглетного кислорода и квантовые выходы интеркомбинационной конверсии в молекулах порфири-
- нов и металлопорфиринов // Хим. физика. 1987. Т. 6. №8. С. 1069-1078. 32. Салохидинов К.И., Бытева И.М., Гурианович Г.П. Время жизни синглетного кислорода в разных растворителях // ЖПС. 1981. Т. 34. В. 5. С. 892-897.
- 33. Кобзев Г.И. Зависимость электродипольных моментов переходов М(а-Х) И М(b-а) в О, от взаимного расположения молекул C₂H₄ и N₂ в тройном комплексе столкновений C₂H₄ - O₂ - N₂ // Труды региональной школы-семинара «квантово-химические расчеты: структура и реакционная способность органических и неорганических молекул». Иваново, 12-15 апреля 2003 г.С. 8-12.
- 2005 Г.С. 8-12.
 34. Кобзев Г.И., Мулдахметов З.М., Федулова И.В., Богомолова Е.Ф. Исследование причин индуцирования и изменения величины электродипольного момента b (¹S₄⁺)-a(¹ D₄) в кислородных комплексах столкновений // Труды международной научной и научно-методической конференции «Наука и образование 1997». Шымкент, 1997. С. 337-338.
 35. Кобзев Г.И., Мулдахметов З.М., Федулова И.В. Дезактивация синглетного кислорода в тройных комплексах О₂...СН₃ОН...С₂H₄// Материалы Республиканской научно-практической конф. «Состояние перспективы производства органических материалов на базе сырьевых ресурсов Центр. Казахстана», посвященной 25-летию КарГУ им. Е.А. Букетова. Которические и 1907. 146 147. Караганда, 1997. – с. 146-147
- 36. Кобзев Г.И. Зависимость моментов переходов (а-Х) и (b-а) в кислороде от структуры и числа молекул в среде и их взаимной ориентации // Труды VII Менделеевского съезда по общей и прикладной химии. Казань, 19-24 сентября 2003 г. Т.1. С. 140.

Список использованной литературы: 1. Мулдахметов З.М., Минаев Б.Ф., Кецле Г.А. Оптические и магнитные свойства триплетного состояния. – Алма-Ата: Изд. Наука, 1983. – См. с. 179-238.